Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 96-100    https://doi.org/10.11896/j.issn.1005-023X.2017.024.019
  材料研究 |
双氧水对镁系无机泡沫材料性能和孔结构的影响
肖俊华1,詹满军2,陈秀兰3,王 健1,左迎峰1,吴义强1
1 中南林业科技大学材料科学与工程学院,长沙 410004;
2 广西丰林木业集团股份有限公司,南宁 530031;
3 大亚人造板集团有限公司,镇江 212300
Effect of Hydrogen Peroxide on Properties and Pore Structure of Magnesium Inorganic Foam Materials
XIAO Junhua1, ZHAN Manjun2, CHEN Xiulan3, WANG Jian1, ZUO Yingfeng1, WU Yiqiang1
1 College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004;
2 Guangxi Fenglin Wood Industry Group Co.Ltd., Nanning 530031;
3 Dare Wood-based Panel Group Co.Ltd., Zhenjiang 212300
下载:  全 文 ( PDF ) ( 843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以镁系胶凝材料为基体,双氧水为发泡剂,采用化学发泡工艺制备了内部含有大量密闭气孔的镁系无机泡沫材料。研究了双氧水添加量对泡沫材料发泡倍率、体积密度、压缩强度、弯曲强度、孔结构参数以及导热系数的影响。研究结果表明:双氧水添加量增加,导致胶凝体中的气泡核增加以及气泡生长的内动力增大,气孔孔径变大,体积密度和力学强度减小;随着双氧水添加量增加,材料的导热系数不断减小,在双氧水添加量大于16‰时增大。镁系无机泡沫材料的压缩强度和弯曲强度与体积密度的回归方程分别为y=-6.06+24.19x,y=-0.64+3.82x,均为密切线性相关关系。且在双氧水添加量为8‰时泡沫材料取得最大力学强度,此时气孔孔径最小,孔结构参数较优,导热系数为0.071 W/(m·K),体积密度仅为0.54 g/cm3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖俊华
詹满军
陈秀兰
王 健
左迎峰
吴义强
关键词:  镁系胶凝材料  双氧水  无机泡沫材料  化学发泡  孔结构    
Abstract: Magnesium inorganic foam materials with a large number of closed pores were prepared by chemical foaming process using magnesium cementitious materials as matrix and hydrogen peroxide as foaming agent. The effects of addictive amount of hydrogen peroxide on the foaming ratio, bulk density, compressive strength, bending strength, pore structure parameters and thermal conductivity of foam materials were studied. The results demonstrated that the addition of hydrogen peroxide increased, the bubble nuclei in the slurry increased, and the internal force of the bubble growth increased, which made the pore diameter become larger and the bulk density and mechanical strength reduced. Furthermore, the thermal conductivity decreased, and then increased when the addictive amount of hydrogen peroxide was lager than 16‰. Regression equations of the compressive strength, flexural strength with bulk density of the magnesium inorganic foam materials are y=-6.06+24.19x, y=-0.64+3.82x, respectively, which are closely linear correlations. When the addictive amount of hydrogen peroxide was 8‰, the maximum mechanical strength was obtained. At this time, the pore diameter was the smallest, the pore structure parameter was better, the thermal conductivity was 0.071 W/(m·K) and the bulk density was only 0.54 g/cm3.
Key words:  magnesium cementitious materials    hydrogen peroxide    inorganic foam materials    chemical foaming    pore structure
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU55  
基金资助: “十二五”国家科技支撑计划课题(2012BAD24B03);林业专利产业化引导项目(林业专利2016-11);国家林业公益性行业科研重大专项(201204704);湖南省科技人才计划项目(2016TP1013);湖南省科技创新平台(2016RS2010)
通讯作者:  吴义强:男,1967年生,博士,教授,主要从事农作物资源利用、生物质复合材料、木材科学研究 E-mail: wuyq0506@126.com 左迎峰:男,1986年生,博士后,讲师,主要从事生物质复合材料及胶黏剂改性研究 E-mail: zuoyf1986@163.com   
作者简介:  肖俊华:男,1993年生,硕士研究生,主要研究方向为无机胶黏剂与轻质复合材料 E-mail:shawtable0416@163.com
引用本文:    
肖俊华,詹满军,陈秀兰,王 健,左迎峰,吴义强. 双氧水对镁系无机泡沫材料性能和孔结构的影响[J]. 《材料导报》期刊社, 2017, 31(24): 96-100.
XIAO Junhua, ZHAN Manjun, CHEN Xiulan, WANG Jian, ZUO Yingfeng, WU Yiqiang. Effect of Hydrogen Peroxide on Properties and Pore Structure of Magnesium Inorganic Foam Materials. Materials Reports, 2017, 31(24): 96-100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.019  或          http://www.mater-rep.com/CN/Y2017/V31/I24/96
1 Wu Yiqiang, Li Xingong, Zuo Yingfeng, et al. Research status on the utilization of forest and agricultural biomass in inorganic wood-based panel[J]. J Forestry Eng, 2016,1(1):8(in Chinese).
吴义强, 李新功, 左迎峰, 等. 农林剩余物无机人造板研究进展[J]. 林业工程学报, 2016,1(1):8.
2 Xiao Junhua, Zuo Yingfeng, Liu Wenjie, et al. Research progress of adhesives for strawboard[J]. Mater Rev: Rev, 2016,30(9):78(in Chinese).
肖俊华, 左迎峰, 刘文杰, 等. 秸秆人造板用胶黏剂研究进展[J]. 材料导报:综述篇, 2016,30(9):78.
3 中国建筑材料联合会. 建材工业“十三五”发展指导意见[J]. 混凝土世界, 2016(10):8.
4 Wang F, Yang L, Guan L, et al. Microstructure and properties of cement foams prepared by magnesium oxychloride cement[J]. J Wuhan University of Technology(Mater Sci Ed), 2015,30(2):331.
5 Yue L, Bing C. New type of super-lightweight magnesium phosphate cement foamed concrete[J]. J Mater Civil Eng, 2014,27(1):04014112.
6 Gu Yaxin, Wang Yanzhao, Wang Xiaomeng. Research progress of foam concrete in different process[J]. Concrete, 2013(12):148(in Chinese).
谷亚新, 王延钊, 王小萌. 不同工艺泡沫混凝土的研究进展[J]. 混凝土, 2013(12):148.
7 Shimizu T, Matsuura K, Furue H, et al. Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method[J]. J Eur Ceram Soc, 2013,33(15):3429.
8 Lei Dongyi, Guo Liping, Sun Wei. Preparation and performance of undisturbed desulfurization gypsum-based foamed concrete[J]. Mater Rev: Res, 2016,30(10):122(in Chinese).
雷东移, 郭丽萍, 孙伟. 原状脱硫石膏泡沫混凝土的制备与性能研究[J]. 材料导报:研究篇, 2016,30(10):122.
9 Huang X, Miao X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass[J]. J Biomater Appl, 2007,21(4):351.
10Akthar F K, Evans J R G. High porosity (>90%) cementitious foams[J]. Cem Concr Res, 2010,40(2):352.
11Liu T, Li X, Guan L, et al. Low-cost and environment-friendly ceramic foams made from lead-zinc mine tailings and red mud: Foaming mechanism, physical, mechanical and chemical properties[J]. Ceram Int, 2016,42(1):1733.
12Wang Z, Liu L, Zhou J, et al. Impacts of potassium permanganate (KMnO4) catalyst on properties of hydrogen peroxide (H2O2) foamed porous cement slurry[J]. Construction Building Mater, 2016,111:72.
13Zhang P, Liu H, Gao D, et al. Shear-bond behavior of the interface between FRP profiles and concrete by the double-lap push shear method[J]. J Compos Construction, 2017,21(4):04017012.
14Jiang J, Lu Z, Niu Y, et al. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement[J]. Mater Des, 2016,92:949.15Xu Wenxiang, Sun Hongguang, Chen Wen, et al. A review of correlative modeling for transport properties, microstructures, and compositions of granular materials in soft matter[J]. Acta Phys Sin, 2016,65(17):178101(in Chinese).
许文祥, 孙洪广, 陈文, 等. 软物质系颗粒材料组成, 微结构与传输性能之间关联建模综述[J]. 物理学报, 2016,65(17):178101.
16Just A, Middendorf B. Microstructure of high-strength foam concrete[J]. Mater Characterization, 2009,60(7):741.
17Jelle B P. Traditional, state-of-the-art and future thermal building insulation materials and solutions-properties, requirements and possibilities[J]. Energy Buildings, 2011,43(10):2549.
[1] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[2] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[5] 朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
[6] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[7] 左迎峰, 肖俊华, 李萍, 王健, 李贤军, 吴义强. 水灰比对镁系无机轻质材料性能的影响规律[J]. 《材料导报》期刊社, 2018, 32(14): 2370-2375.
[8] 王丽, 王哲, 宁国艳, 沈玉林, 王喜明. 木基导电电磁屏蔽材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2320-2328.
[9] 吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄. 整体型环氧树脂大孔聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(8): 31-34.
[10] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed