Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 10-14    https://doi.org/10.11896/j.issn.1005-023X.2017.024.003
  第一届先进胶凝材料研究与应用学术会议 |
氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征
吕生华1,2,罗潇倩1,张 佳1,高党国3,孙 立1,胡浩岩1
1 陕西科技大学轻工科学与工程学院,西安 710021;
2 轻化工程国家级实验教学示范中心陕西科技大学,西安 710021;
3 陕西省机械研究院材料研究所,咸阳 712000
Graphene Oxide Controlled Cement Materials Formation of Large-scale Ordered Structure and Its Properties Characterization
LU Shenghua1,2, LUO Xiaoqian1, ZHANG Jia1, GAO Dangguo3, SUN Li1, HU Haoyan1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
2 National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi’an 710021;
3 Materials Institute, Shaanxi Machinery Research Institute, Xianyang 712000
下载:  全 文 ( PDF ) ( 640KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将制备的GO与减水剂和拌合水超声处理后用于制备水泥基复合材料,研究结果表明,GO纳米片层在水泥基体中达到了均匀分散,水泥水化产物成为了规整形状的多面体状水化晶体,通过其交织交联形成了大规模规整致密的微观结构。当GO掺量为0.03%时,尺寸为30~190 nm GO的水泥基复合材料28 d时的抗压强度和抗折强度比对照样品分别提高了78.8%和112.7%,尺寸为110~410 nm GO的水泥基复合材料的抗压强度和抗折强度分别提高了72.3%和93.9%,水泥基复合材料的耐久性显著提高。同时提出了水泥基复合材料微观结构形成机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕生华
罗潇倩
张 佳
高党国
孙 立
胡浩岩
关键词:  氧化石墨烯  水泥基复合材料  微观结构  形成机理  性能    
Abstract: The cement composites was prepared by ultrasonic processing of prepared graphene oxide (GO) and polycarboxylate superplasticizer (PCs) in mixing water. The research results indicate that GO has been evenly dispersed in cement matrix and the cement hydration products became uniform polyhedron-shaped crystals and formed large-scale ordered and compact microstructure within the bulk cement. A 0.03% GO with size range of 30—190 nm resulted in compressive and flexural strengths increase rate of 78.8% and 112.7%, compared with the control sample. In constrast to GO with size range of 110—410 nm, the corresponding increase rate was 72.3% and 93.9%, respectively. Their durability has significantly improved compared to the control sample. Meanwhile, the forming mechanism of ordered crystals and structure was proposed.
Key words:  graphene oxide    cement composites    microstructure    forming mechanism    properties
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528.572  
基金资助: 陕西省科技统筹资源引导项目(2016KTCL01-14);国家自然科学基金面上项目(21276152)
作者简介:  吕生华:男,1963年生,博士,教授,博士研究生导师,主要研究方向为氧化石墨烯的制备及应用,水泥基材料的结构与性能 E-mail:lvsh@sust.edu.cn
引用本文:    
吕生华,罗潇倩,张 佳,高党国,孙 立,胡浩岩. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 10-14.
LU Shenghua, LUO Xiaoqian, ZHANG Jia, GAO Dangguo, SUN Li, HU Haoyan. Graphene Oxide Controlled Cement Materials Formation of Large-scale Ordered Structure and Its Properties Characterization. Materials Reports, 2017, 31(24): 10-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.003  或          http://www.mater-rep.com/CN/Y2017/V31/I24/10
1 Zhang Yunhua, Yao Liping, Xu Shijin, et al. Mechanical properties of cement matrix composites reinforced with surface treated based basalt fibers[J].Acta Mater Compos Sin, 2017,34(5):1159(in Chinese).
张运华, 姚丽萍, 徐仕进,等. 面处理玄武岩纤维增强水泥基复合材料力学性能[J].复合材料学报,2017,34(5):1159.
2 Qin Xiaochuan, Meng Shaoping, Tu Yongming. Relationship between mesoscopic freeze-thaw damage and compressive strength of high-strength concrete materials[J]. Mater Rev: Res,2017,31(1):117(in Chinese).
秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系[J].材料导报:研究篇,2017,31(1):117.
3 Chen Hui. From cement hydration reaction to spontaneous transformation of concrete[J]. China Concr, 2016(4):44(in Chinese).
陈辉.从水泥的水化到水泥和混凝土的自发变形[J].混凝土世界,2016(4):44.
4 Asgari H, Ramezanianpour A, Butt H J. Effect of water and nano-silica solution on the early stages cement hydration[J]. Constr Build Mater, 2016,132:11.
5 Liu Juanhong, Li Kang, Song Shaomin, et al.Influence of gypsum on hydration and hardening performance of limestone powder in cement based material[J].Mater Rev:Res,2017,31(2):105(in Chinese).
刘娟红,李康,宋少民,等.石膏对石灰石粉水泥基材料水化及硬化性能的影响[J].材料导报:研究篇,2017,31(2):105.
6 Cui Hongzhi,Yang Jiaming, Lin Haozeng. Research progress on carbon nanotubes dispersion techniques and CNTs-reinforced cement-based materials[J].Mater Rev: Rev, 2016,30(2):91(in Chinese).
崔宏志,杨嘉明,林炅增.碳纳米管分散技术及碳纳米管-水泥基复合材料研究进展[J].材料导报:综述篇, 2016,30(2):91.
7 Nadiv R, Peled A, Mechtcherine V, et al. Micro- and nanoparticle mineral coating for enhanced properties of carbon multifilament yarn cement-based composites[J]. Compos Part B Eng, 2017,111:179.
8 Lu Shenghua, Zhu Linlin, Jia Chunmao, et al. Influence of PCs/GO composites on microstructure and mechanical properties of cement based materials[J]. Mater Rev: Res, 2017,31(3):125(in Chinese).
吕生华,朱琳琳,贾春茂,等. PCs/GO复合物对水泥基材料微观结构和力学性能的影响[J].材料导报:研究篇,2017,31(3):125.
9 Biskri Y, Achoura D, Chelghoum N, et al. Mechanical and durability characteristics of high performance concrete containing steel slag and crystalized slag as aggregates[J]. Constr Build Mater, 2017,150:167.
10Xu Hui. Study on crack growth based on penetration of concrete[J]. J Chongqing University of Technology (Natural Science), 2012,26(10):25(in Chinese).
徐晖. 混凝土侵彻过程中的裂纹扩展[J].重庆理工大学学报(自然科学版),2012,26(10):25.
11Mang C, Jason L, Davenne L. Crack opening estimate in reinforced concrete walls using a steel-concrete bond model[J]. Archives Civil Mech Eng, 2016,16(3):422.
12Lv S H,Ma Y J, Qiu C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Constr Build Mater, 2013,49:121.
13Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Constr Build Mater, 2014,64:231.
14Lv S H, Sun T, Liu J J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness[J]. Cryst Eng Comm, 2016,16:8508.
15Lv S H, Zhang J, Zhu L L, et al. Regulation of graphene oxide on microstructure of cement composites and its impact on compressive and flexural strength[J]. J Chem Ind Eng, 2017,68(6):2585(in Chinese).
吕生华, 张佳, 朱琳琳, 等.氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报,2017, 68(6):2585.
16Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites using copolymerization, for reinforcing and toughening cement composites[J].Cem Concr Compos, 2016,66:1.
17Lv S H, Zhang J, Zhu L L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability[J]. Materials, 2016, 9(11):1.
18Abrishami M E, Zahabi V. Reinforcing graphene oxide/cement composite with NH2 functionalizing group[J]. Bull Mater Sci, 2017,39(4):1073.
19Mokhtar M M, Abo-El-Enein S A, Hassaan M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Constr Build Mater, 2017,138:333.
20Wang M, Wang R M, Yao H, et al. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement[J]. Constr Build Mater, 2016,126:730.
21Zhao L, Guo X L, Ge C, et al. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites[J]. Compos Part B Eng, 2017,113:308.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[7] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[8] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[9] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[10] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[11] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[12] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[13] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[14] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[15] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed