Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 97-103    https://doi.org/10.11896/j.issn.1005-023X.2017.019.014
  材料综述 |
多维度纳米增强水泥基复合材料的研究进展*
潘锐之1, 张树鹏1, 郑大鹏2, 崔宏志2, 李东旭1
1 南京工业大学,江苏先进生物与化学制造协同创新中心,南京211800;
2 深圳大学土木工程学院,广东省滨海土木工程耐久性重点实验室,深圳 518060
Multidimensional Nano-reinforced Cement-based Composites: A Review
PAN Ruizhi1 , ZHANG Shupeng1 , ZHENG Dapeng2 , CUI Hongzhi2 , LI Dongxu1
1 Jiangsu National Synergetic Innovation Center for Advanced Materials SICAM, Nanjing Tech University, Nanjing 211800;
2 Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil Engineering, Shenzhen University, Shenzhen 518060
下载:  全 文 ( PDF ) ( 1228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米材料领域的飞速发展为水泥基复合材料的增强改性提供了宝贵的机会。工程纳米材料存在3种主要形状,即0维纳米颗粒、1维纳米纤维和2维纳米片层。有大量文献已经报道了0维纳米颗粒和1维纳米纤维(如纳米二氧化硅和碳纳米管)在水泥基中的应用,而2维纳米片层状的氧化石墨烯(GO)的发现为水泥基复合材料提供了又一种维度的增强方式,目前已经受到了越来越广泛的关注。综述了近期各种维度纳米改性水泥基复合材料的研究进展,并总结了纳米材料与水泥基复合材料复合后的工作性、水化反应、力学性能及微观结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘锐之
张树鹏
郑大鹏
崔宏志
李东旭
关键词:  纳米材料  维度  增强  水化  水泥基材料    
Abstract: The rapid development of nano-materials provides a valuable opportunity for enhancing the cement-based compo-sites. There are three main engineered nanomaterials shapes: 0-dimensional nanoparticles, 1-dimensional nanofibers and 2-dimensio-nal nanosheets. A large number of literatures have reported the use of 0-dimensional nanoparticles and 1-dimensional nanofibres (e.g. nanosilica and carbon nanotubes) in cementitious matrix. While the 2-dimensional nanosheet like graphene oxide (GO) provides a new dimension for cement-based composites and has been attracting more and more attentions. In this paper, recent progress of nano-modified cementitious composites in various dimensions are reviewed including the workability, hydration reaction, mechanical pro-perties and microstructure of the nano-materials modified cementious composites.
Key words:  nanomaterials    dimension    reinforcement    hydration    cement-based materials
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TQ172  
基金资助: *国家高技术研究发展计划(863计划)(2015AA034701);江苏省普通高校学术学位研究生科研创新计划项目(KYLX16_0588)
作者简介:  潘锐之:男,1993年生,硕士研究生,主要从事纳米改性水泥基材料方面的研究 李东旭:通讯作者,男,1956年生,博士, 教授,博士研究生导师, 研究方向为无机胶凝材料 E-mail:dongxuli@njtech.cn
引用本文:    
潘锐之, 张树鹏, 郑大鹏, 崔宏志, 李东旭. 多维度纳米增强水泥基复合材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 97-103.
PAN Ruizhi , ZHANG Shupeng , ZHENG Dapeng , CUI Hongzhi , LI Dongxu. Multidimensional Nano-reinforced Cement-based Composites: A Review. Materials Reports, 2017, 31(19): 97-103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.014  或          http://www.mater-rep.com/CN/Y2017/V31/I19/97
1 Zhang T, Gao P, Gao P, et al. Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview[J].Resour Conserv Recycl,2013,74:134.
2 Zollo R F. Fiber-reinforced concrete: An overview after 30 years of development[J]. Cem Concr Compos,1997,19(2):107.
3 Pacheco-Torgal F, Jalali S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials[J]. Constr Build Mater,2011,25(2SI):582.
4 Raki L, Beaudoin J, Alizadeh R, et al. Cement and concrete nanoscience and nanotechnology[J]. Materials,2010,3(2):918.
5 Manzur T, Yazdani N. Effect of different parameters on properties of multiwalled carbon nanotube-reinforced cement composites[J]. Arabian J Sci Eng,2016,41(12):4835.
6 Isfahani F T, Li W, Redaelli E. Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites[J]. Cem Concr Compos,2016,74:154.
7 Brandt A M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering[J]. Compos Struct,2008,86(1-3):3.
8 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
9 Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457.
10 Peigney A, Laurent C, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon,2001,39(4):507.
11 Li V C, Obla K H. Effect of fiber length variation on tensile properties of carbon-fiber cement composites [J]. Compos Eng,1994,4(9):947.
12 Pelisser F, Da S Santos Neto A B, La Rovere H L, et al. Effect of the addition of synthetic fibers to concrete thin slabs on plastic shrinkage cracking[J]. Constr Build Mater,2010,24(11):2171.
13 Yap S P, Alengaram U J, Jumaat M Z. The effect of aspect ratio and volume fraction on mechanical properties of steel fiber-reinforced oil palm shell concrete[J]. J Civ Eng Manag,2016,22(2):168.
14 Abadel A, Abbas H, Almusallam T, et al. Mechanical properties of hybrid fibre-reinforced concrete-analytical modelling and experimental behaviour[J]. Mag Concr Res,2016,68(16):823.
15 Zhao X, Zhang L. State-of-the-art review on FRP strengthened steel structures[J]. Eng Struct,2007,29(8):1808.
16 Grubb J A, Blunt J, Ostertag C P, et al. Effect of steel microfibers on corrosion of steel reinforcing bars[J]. Cem Concr Res,2007,37(7):1115.
17 Bentur A, Peled A, Yankelevsky D. Enhanced bonding of low mo-dulus polymer fibers cement matrix by means of crimped geometry[J]. Cem Concr Res,1997, 27(7):1099.
18 Qian C X, Stroeven P. Development of hybrid polypropylene-steel fibre-reinforced concrete[J]. Cem Concr Res,2000,30(1):63.
19 Dundar C, Tanrikulu A K, Frosch R J. Prediction of load-deflection behavior of multi-span FRP and steel reinforced concrete beams[J]. Compos Struct,2015,132:680.
20 Shekar K C, Prasad B A, Prasad N E. Effect of notch root radius on the fracture toughness of epoxy and 0.5 wt% amino MWCNTs-reinforced nanocomposite[J]. Trans Indian Inst Met,2016,69(5):1069.
21 Oltulu M, Sahin R. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume[J]. Mater Sci Eng A,2011,528(22-23):7012.
22 Kawashima S, Hou P, Corr D J, et al. Modification of cement-based materials with nanoparticles[J]. Cem Concr Compos,2013,36:8.
23 Ye Q, Zhang Z, Kong D, et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume[J]. Constr Build Mater,2007,21(3):539.
24 Yu R, Tang P, Spiesz P, et al. A study of multiple effects of nano-silica and hybrid fibres on the properties of ultra-high performance fibre reinforced concrete (UHPFRC) incorporating waste bottom ash (WBA)[J]. Constr Build Mater,2014,60:98.
25 Walters D A, Ericson L M, Casavant M J, et al. Elastic strain of freely suspended single-wall carbon nanotube ropes[J]. Appl Phys Lett,1999,74(25):3803.
26 See C H, Harris A T. A review of carbon nanotube synthesis via flui-dized-bed chemical vapor deposition[J]. Ind Eng Chem Res,2007,46(4):997.
27 Jiang X, Drzal L T. Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of pa-raffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes[J]. Composites Part A,2011, 42(11):1840.
28 Qiu L, Yang X, Gou X, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives[J]. Chemistry—A Eur J,2010, 16(35):10653.
29 Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on portland cement paste[J]. J Mater Civil Eng,2015,27(2):A40140102.
30 Lv S, Ma Y, Qiu C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Constr Build Mater,2013,49:121.
31 Hou P, Kawashima S, Kong D, et al. Modification effects of colloidal nanoSiO2 on cement hydration and its gel property[J]. Compo-sites Part B,2013,45(1):440.
32 Zhang M, Islam J, Peethamparan S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag[J]. Cem Concr Compos,2012,34(5):650.
33 Hosseinpourpia R, Varshoee A, Soltani M, et al. Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites[J]. Constr Build Mater,2012,31:105.
34 Najigivi A, Khaloo A, Zad A I, et al. Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete[J]. Composites Part B,2013,54:52.
35 Zhang M, Li H. Pore structure and chloride permeability of concrete containing nano-particles for pavement[J]. Constr Build Mater,2011,25(2):608.
36 Yousefi A, Allahverdi A, Hejazi P. Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes[J]. Constr Build Mater,2013,41:224.
37 Parveen S, Rana S, Fangueiro R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites[J]. J Nanomater,2013,2013(7):80.
38 Ma P, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A,2010, 41(10):1345.
39 Fan Jie,Xiong Guangjing,Li Gengying. Progress in research and development of carbon nanotubes-reinforced cement-based composite materials[J]. Mater Rev:Rev,2014,28(6):142(in Chinese).
范杰,熊光晶,李庚英. 碳纳米管水泥基复合材料的研究进展及其发展趋势[J]. 材料导报:综述篇,2014,28(6):142.
40 Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and, reinforcing efficiency[J]. Cem Concr Compos,2013,36:25.
41 Falchi L, Zendri E, Mueller U, et al. The influence of water-repellent admixtures on the behaviour and the effectiveness of Portland limestone cement mortars[J]. Cem Concr Compos,2015,59:107.
42 Cwirzen A, Habermehl-Cwirzen K, Nasibulin A G, et al. SEW/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles[J]. Mater Charact,2009,60(7):735.
43 Tyson B M, Abu Al-Rub R K, Yazdanbakhsh A, et al. Carbon nanotubes and carbon nanofibers for enhancing the mechanical pro-perties of nanocomposite cementitious materials[J]. J Mater Civ Eng,2011,23(7):1028.
44 Li G Y, Wang P M, Zhao X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005,43(6):1239.
45 Nasibulina L I, Anoshkin I V, Nasibulin A G, et al. Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite[J]. J Nanomater,2012(11-12):35.
46 Li D, Mueller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101.
47 Lv S, Ma Y, Qiu C, et al. Regulation of GO on cement hydration crystals and its toughening effect[J]. Mag Concr Res,2013,65(20):1246.
48 Senff L, Labrincha J A, Ferreira V M, et al. Effect of nano-silica on rheology and fresh properties of cement pastes and mortars[J]. Constr Build Mater,2009,23(7):2487.
49 Berra M, Carassiti F, Mangialardi T, et al. Effects of nanosilica addition on workability and compressive strength of Portland cement pastes[J]. Constr Build Mater,2012,35:666.
50 Kong D, Su Y, Du X, et al. Influence of nano-silica agglomeration on fresh properties of cement pastes[J]. Constr Build Mater,2013,43:557.
51 Collins F, Lambert J, Duan W H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures[J]. Cem Concr Compos,2012,34(2):201.
52 Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cem Concr Compos,2016,66:1.
53 Zhang M, Islam J. Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag[J]. Constr Build Mater,2012,29:573.
54 Makar J M, Chan G W. Growth of cement hydration products on single-walled carbon nanotubes[J]. J Am Ceram Soc,2009,92(6):1303.
55 Lv Shenghua, Sun Ting, Liu Jingjing, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix compo-sites[J]. Acta Mater Compos Sin,2014(3):644(in Chinese).
吕生华,孙婷,刘晶晶,等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J]. 复合材料学报,2014(3):644.
56 Li G Y. Properties of high-volume fly ash concrete incorporating nano-SiO2[J]. Cem Concr Res,2004,34(6):1043.
57 Zdravkov B D, Cermak J J, Sefara M, et al. Pore classification in the characterization of porous materials: A perspective[J]. Central Eur J Chem,2007,5(2):385.
58 Wang Baomin, Han Yu, Song Kai. A theoretical exploration into durability of carbon nanotubes cement-based materials[J]. Low Temp Archit Technol,2011(11):1(in Chinese).
王宝民,韩瑜,宋凯. 碳纳米管水泥基材料耐久性理论探讨[J]. 低温建筑技术,2011(11):1.
59 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites[J]. Cem Concr Compos,2010,32(2):110.
60 Melo V S, Calixto J M F, Ladeira L O, et al. Macro- and micro-characterization of mortars produced with carbon nanotubes[J]. ACI Mater J,2011,108(3):327.
61 Jo B, Kim C, Lim J. Characteristics of cement mortar with nano-SiO2 particles[J]. ACI Mater J,2007,104(4):404.
62 Nazari A, Riahi S. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete[J]. Composites Part B,2011,42(3):570.
63 Kong D, Du X, Wei S, et al. Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials[J]. Constr Build Mater,2012,37:707.
64 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cem Concr Res,2010,40(7):1052.
65 Abu Al-Rub R K, Ashour A I, Tyson B M. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites[J]. Constr Build Mater,2012,35:647.
66 Mohammed A, Sanjayan J G, Duan W H, et al. Incorporating graphene oxide in cement composites: A study of transport properties[J]. Constr Build Mater,2015, 84:341.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[3] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[4] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[7] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[8] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[9] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[10] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[11] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[12] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[13] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[14] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[15] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed