Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 25-29    https://doi.org/10.11896/j.issn.1005-023X.2017.020.006
  材料研究 |
预活化时间对稻壳基活性炭结构和电化学性能的影响*
宋晓岚1,2, 刘汉俊1,2, 王海波1,2, 段海龙1,2, 张颖1,2, 刘时超1,2, 周永鑫1,2, 周志海1,2
1 中南大学资源加工与生物工程学院,长沙 410083;
2 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
Effect of Pre-activation Time on Structure and Electrochemical Performance for Rice Husk-based Activated Carbon
SONG Xiaolan1,2, LIU Hanjun1,2, WANG Haibo1,2, DUAN Hailong1,2, ZHANG Ying1,2, LIU Shichao1,2, ZHOU Yongxin1,2, ZHOU Zhihai1,2
1 School of Mineral Processing and Bioengineering, Central South University, Changsha 410083;
2 Key Laboratory for Mineral Materials and Application of Hunan Province, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 1580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以农业废料稻壳为碳源,氢氧化钠为活化剂,采用干法两步活化法制备活性炭。X射线衍射分析表明该法能有效去除稻壳中的灰分,提高活性炭的孔隙率。扫描电镜结果表明,活性炭具有发达的孔隙结构。以活性炭制备超级电容器的电极,并组装成扣式电容器。采用恒流充放电、循环伏安、交流阻抗等测定超级电容器的电化学性能,并着重探究了预活化时间对活性炭的结构及电化学性能的影响。结果表明,预活化时间为120 min的活性炭的比电容最大,在0.25 A/g电流密度下,可达219 F/g,经过1 000次循环后,其电容保持率仍达85.4%。这表明活性炭电极具有较理想的电容特性,且循环性能稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋晓岚
刘汉俊
王海波
段海龙
张颖
刘时超
周永鑫
周志海
关键词:  稻壳  活性炭  预活化时间  超级电容器  比电容    
Abstract: In this paper, agricultural waste rice husk as carbon source, sodium hydroxide as activator, dry two-step activation was used to prepare activated carbon. The results of X-ray diffraction (XRD) showed that this activation method could effectively remove ash from rice husk and improve the porosity of activated carbon. Scanning electron microscopy (SEM) revealed that the activated carbon has a developed pore structure. And then the electrode of supercapacitor was prepared with activated carbon and assembled into a button capacitor. The electrochemical performance of supercapacitor was measured by constant current charging-discharging, cyclic voltammetry (CV) and alternating current (AC) impedance. In addition, the effect of pre-activation time on structure and electrochemical properties of activated carbon was investigated. The results showed that the activated carbon with the pre-activation time of 120 min possessed the largest specific capacitance of 219 F/g at 0.25 A/g for current density. And the capacitance retention rate was as high as 85.4% after 1 000 cycles, indicating that the activated carbon electrode had ideal capacitance characteristics and stable cycling performance.
Key words:  rice husk    activated carbon    pre-activation time    supercapacitor    specific capacitance
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB34  
  O646  
基金资助: *湖南省国土资源厅科技计划项目(2013-14);国家大学生创新创业项目
作者简介:  宋晓岚:女,1964年生,博士,教授,博士研究生导师,主要从事无机功能材料、纳米材料研究 E-mail:songxiaolan@csu.edu.cn
引用本文:    
宋晓岚, 刘汉俊, 王海波, 段海龙, 张颖, 刘时超, 周永鑫, 周志海. 预活化时间对稻壳基活性炭结构和电化学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 25-29.
SONG Xiaolan, LIU Hanjun, WANG Haibo, DUAN Hailong, ZHANG Ying, LIU Shichao, ZHOU Yongxin, ZHOU Zhihai. Effect of Pre-activation Time on Structure and Electrochemical Performance for Rice Husk-based Activated Carbon. Materials Reports, 2017, 31(20): 25-29.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.006  或          http://www.mater-rep.com/CN/Y2017/V31/I20/25
1 Kim T Y, Jung G, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores[J]. ACS Nano, 2013,7(8):6899.
2 Kaempgen M, Chan C K, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes[J]. Nano Lett, 2009,9(5):1872.
3 He Y, Chen W, Gao C, et al. An overview of carbon materials for flexible electrochemical capacitors[J]. Nanoscale, 2013,5(19):8799.
4 Long J W, Bélanger D, Brousse T, et al. Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes[J]. MRS Bull, 2011,36(7):513.
5 Zhang X, Zhang H, Li C, et al. Recent advances in porous graphene materials for supercapacitor applications[J]. RSC Adv, 2014,4(86):45862.
6 Divyashree A, Hegde G. Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications—A review[J]. RSC Adv, 2015,5(107):88339.
7 Pan H, Li J, Feng Y P. Carbon nanotubes for supercapacitor[J]. Nanoscale Res Lett, 2010,5(3):654.
8 Jung S M, Mafra D L, Lin C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance [J]. Nanoscale, 2015,7(10):4386.
9 Xing Baolin, Chen Lunjian, Zhang Chuanxiang, et al. Research progress of activated carbon electrode material for supercapacitor [J]. Mater Rev: Rev, 2010, 24(8):22(in Chinese).
邢宝林, 谌伦建, 张传祥,等. 超级电容器用活性炭电极材料的研究进展[J]. 材料导报:综述篇,2010,24(8):22.
10Zhao J, Zhang Y, Wang T, et al. Reed leaves as a sustainable silica source for 3D mesoporous nickel (Cobalt) silicate architectures assembled into ultrathin nanoflakes for high-performance supercapacitors[J]. Adv Mater Interfaces, 2015,2(2):1
11Ganesan A, Mukherjee R, Raj J, et al. Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage[J]. Porous Mater, 2014,21(5):839.
12Le Van K, Thi T T L. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor[J]. Prog Nat Sci: Mater Int, 2014,24(3):191.
13Teo E Y L, Muniandy L, Ng E P, et al. High surface area activated carbon from rice husk as a high performance supercapacitorelectrode[J]. Electrochim Acta, 2016,192:110.
14Wei L, Yushin G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors[J]. Nano Energy, 2012,1(4):552.
15Guo Y, Yu K, Wang Z, et al. Effects of activation conditions on preparation of porous carbon from rice husk[J]. Carbon, 2003,41(8):1645.
16Song X, Zhang Y, Yan C, et al. The Langmuir monolayer adsorption model of organic matter into effective pores in activated carbon[J]. J Colloid Interface Sci, 2013,389(1):213.
17Song X, Zhang Y, Chang C. Novel method for preparing activated carbons with high specific surface area from rice husk[J]. Ind Eng Chem Res, 2012,51(46):15075.
18García N, Benito E, Guzmán J, et al. Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces: Preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica[J]. J Am Chem Soc, 2007,129(16):5052.
19Barpanda P, Fanchini G, Amatucci G G. Structure, surface morphology and electrochemical properties of brominated activated carbons[J]. Carbon, 2011,49(7):2538.
20Oh I, Kim M, Kim J. Deposition of Fe3O4 on oxidized activated carbon by hydrazine reducing method for high performance supercapacitor[J]. Microelectron Reliab, 2015,55(1):114.
[1] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[2] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[3] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[4] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[5] 林星, 林冠烽, 黄彪1. 物理化学活化法制备红麻杆基活性炭及其表征[J]. 材料导报, 2019, 33(1): 198-202.
[6] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[7] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[8] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[9] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[10] 王亚丽, 陈美娜, 崔素萍, 马晓宇. 稻壳灰-电石渣复合吸收剂的脱硫脱硝性能[J]. 材料导报, 2018, 32(22): 3995-3999.
[11] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[12] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[13] 阳锋, 杨淑颐, 魏子斐, 王莉淋. 过硫酸氢盐催化材料(Co3O4/ACF)的制备及应用[J]. 材料导报, 2018, 32(20): 3654-3659.
[14] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[15] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed