Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 146-150    https://doi.org/10.11896/j.issn.1005-023X.2017.013.019
  生物医用材料 |
显微组织对医用TC4钛合金U型钉缩口的影响
白鹏飞1, 闵小华1, 陶晓杰2, 钟功诚2, 白树玉2, 程从前1, 赵杰1
1 大连理工大学材料科学与工程学院,大连 116024;
2 大连盛辉钛业有限公司,大连 116600
Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy
BAI Pengfei1, MIN Xiaohua1, TAO Xiaojie2, ZHONG Gongcheng2, BAI Shuyu2, CHENG Congqian1, ZHAO Jie1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024;
2 Dalian SUNTEC TITANIUM LTD, Dalian 116600
下载:  全 文 ( PDF ) ( 1738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过光学显微镜、维氏硬度、拉伸实验、X射线衍射和电子背散射衍射等方法,对比分析了两种缩口尺寸不同的医用U型钉用TC4钛合金棒材的显微组织和力学性能。基于两种棒材的显微组织和力学性能的差别,探讨了不同棒材加工的U型钉缩口差异的原因。结果表明:两种棒材横截面的显微组织比较均匀,差异不大,而纵截面显微组织的差异比较明显。大缩口棒材纵截面的α相为变形晶粒,小缩口棒材纵截面的β相主要为等轴晶,两种棒材的β相无明显差别。大缩口棒材的维氏硬度和屈服强度都高于小缩口棒材。再结晶程度的不同导致两种棒材的显微组织和力学性能不同,进而引起U型钉缩口的差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白鹏飞
闵小华
陶晓杰
钟功诚
白树玉
程从前
赵杰
关键词:  TC4钛合金  U型钉  缩口尺寸  显微组织  力学性能    
Abstract: Microstructure and mechanical properties of two medical TC4 titanium alloy bars, which made medical U-shaped nails with different necking size, were studied by optical microscope, Vickers hardness, tensile test, X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). Based on the difference of microstructure and mechanical properties of two TC4 alloy bars, the reason why necking of U-shaped nails didn′t unit had been explored. The results show that microstructure of two TC4 alloy bars are uniform at the cross-section. However, α phase of big necking bar is mainly deformed grain at the longitudinal-section, while the small necking bar is mainly equiaxial grain. In addition, β phase of two bars has no obvious difference. The Vickers hardness and yield strength of big necking bar are higher than that of small necking bar. The different degree of recrystallization of two bars contributes to the different microstructure and mechanical properties,which results in the difference of necking size of U-shaped nails.
Key words:  TC4 titanium alloy    U-shaped nail    necking size    microstructure    mechanical property
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG146.2+3  
通讯作者:  闵小华:通讯作者,男,1974年生,博士,教授,博士研究生导师,研究方向为高性能和多功能钛合金 E-mail:minxiaohua@dlut.edu.cn   
作者简介:  白鹏飞:男,1990年生,硕士研究生,研究方向为生物医用钛合金 E-mail:bpf2014@mail.dlut.edu.cn
引用本文:    
白鹏飞, 闵小华, 陶晓杰, 钟功诚, 白树玉, 程从前, 赵杰. 显微组织对医用TC4钛合金U型钉缩口的影响[J]. CLDB, 2017, 31(13): 146-150.
BAI Pengfei, MIN Xiaohua, TAO Xiaojie, ZHONG Gongcheng, BAI Shuyu, CHENG Congqian, ZHAO Jie. Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy. Materials Reports, 2017, 31(13): 146-150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.019  或          http://www.mater-rep.com/CN/Y2017/V31/I13/146
1 Li Hongmei, Lei Ting, Fang Shuming, et al. Researc h progress of biomedical titanium alloys [J]. Metall Funct Mater,2011,18(2):70 (in Chinese).
李红梅,雷霆,方树铭,等. 生物医用钛合金的研究进展[J]. 金属功能材料,2011,18(2):70.
2 Zhang Wenyu. The research progress of biomedical titanium alloys [J]. Chem Adhesion,2014,36(5):369(in Chinese).
张文毓. 生物医用钛合金的研究进展[J]. 化学与黏合,2014,36(5):369.
3 Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater Sci Eng A,1998,243(1):244.
4 Hao Yulin, Yang Rui. High strength nano-structured Ti-Nb-Zr-Sn alloy [J]. Acta Metall Sin,2005,41(11):75(in Chinese).
郝玉琳,杨锐. 纳米高强Ti-Nb-Zr-Sn合金[J]. 金属学报,2005,41(11):75.
5 Zhao X L, Niinomi M, Nakai M, et al. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young′s modulus for spinal fixation applications [J]. Acta Biomater,2011,7(8):3230.
6 Santosp F, Niinomi M, Cho K, et al. Microstructures, mechanical properties and cytotoxicity of low beta Ti-Mn alloys for biomedical applications [J]. Acta Biomater,2015,26:366.
7 Liu H H, Niinomi M, Nakai M, et al. β-Type titanium alloys for spinal fixation surgery with high Young′s modulus variability and good mechanical properties [J]. Acta Biomater,2015,24:361.
8 Liu H H, Niinomi M, Nakai M, et al. Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for fixation devices [J]. Acta Biomater,2015,12(1):352.
9 Liu H H, Niinomi M, Nakai M, et al. Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O [J]. Acta Mater,2016,106:162.
10 Zheng Kai, Yu Xiuchun, Guo Zheng, et al. The application and development of metal materials in orthopedics [J]. Orthopaedic Biomech Mater Clinical Study,2013,10(2):31(in Chinese).
郑凯,于秀淳,郭征,等. 生物金属材料在骨科的应用及发展[J]. 生物骨科材料与临床研究,2013,10(2):31.
11 《中国组织工程研究与临床康复》学术部.医用金属材料相关产品的应用现状和发展趋势[J]. 中国组织工程研究与临床康复,2010,14(51):9621.
12 Jia Zonghai. The optimum design and mechanical test of the novel cannulated pedicle screw [D]. Jinan: Shandong University,2011(in Chinese).
贾宗海. 新型可灌注椎弓根螺钉的优化设计及力学检测[D]. 济南:山东大学,2011.
13 Griza S, Andrade C E C, Batista W W, et al. Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects [J]. Eng Failure Anal,2012,25:133.
14 Huang Yongguang. Developments of titanium and titanium alloy and standardization for surgical implant [J]. Titanium Ind Prog,2010,27(1):1(in Chinese).
黄永光. 外科植入用钛及钛合金标准发展现状[J]. 钛工业进展,2010,27(1):1.
15 Huang Yamin, Pan Chunxu. Micro-stress-strain analysis in materials based upon EBSD technique: A review [J]. J Chinese Electron Microscope Soc,2010,29(1):662(in Chinese).
黄亚敏,潘春旭. 基于电子背散射衍射(EBSD)技术的材料微区应力应变状态研究综述[J]. 电子显微学报,2010,29(1):662.
16 Choi J Y, Ji J H, Hwang S W, et al. TRIP aided deformation of a near-Ni-free, Mn-N bearing duplex stainless steel [J]. Mater Sci Eng A,2012,535:32.
17 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater,2011,59:658.
18 Min X H, Emura S, Zhang L, et al. Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase [J]. Mater Sci Eng A,2015,646:279.
19 Cai M H, Wei X, Rolfe B, et al. Microstructure and texture evolution during tensile deformation of symmetric/asymmetric-rolled low carbon microalloyed steel [J]. Mater Sci Eng A,2015,641:297.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed