A Review of the Application of Inorganic Nanomaterials in Sonodynamic Therapy
DAI Yingfan, YANG Ruihao, LYU Quanjie, LI Hanyin, TAO Ke*
The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract: Sonodynamic therapy is a novel and promising antitumor therapy, with advantages of non-invasiveness, deep penetration, high-level of safety and spatiotemporal selectivity. Under low frequency ultrasound, sonodynamic therapy could cause tissue damage via redox oxygen species and cavitation. The existing sonosensitizers can be divided into organic sonosensitizers, inorganic sonosensitizers and organic/inorganic hybrid sonosensitizers. Inorganic sonosensitizers have been highly focused recently because of high ultrasonic stability, versatility, simple synthesis and easy surface modification. In this review, we focused on the mechanism of chemical and mechanical damage in sonodynamic therapy, summarized the existing inorganic sonosensitizers based on mechanism, and pointed out challenges and possible solutions.
戴瑛凡, 杨瑞昊, 吕权杰, 李晗寅, 陶可. 无机纳米材料用于声动力治疗的研究进展[J]. 材料导报, 2024, 38(1): 22110085-6.
DAI Yingfan, YANG Ruihao, LYU Quanjie, LI Hanyin, TAO Ke. A Review of the Application of Inorganic Nanomaterials in Sonodynamic Therapy. Materials Reports, 2024, 38(1): 22110085-6.
1 Sung H, Ferlay J, Siegel R L, et al. CA:A Cancer Journal for Clinicians, 2021, 71, 209. 2 Miller K D, Nogueira L, Devasia T, et al. CA:A Cancer Journal for Clinicians, 2022, 72, 409. 3 Holohan C, Van Schaeybroeck S, Longley D B, et al. Nature Reviews Cancer, 2013, 13, 714. 4 Nosaka Y, Nosaka A Y. Chemical Reviews, 2017, 117, 11302. 5 Lovell J F, Liu T W B, Chen J, et al. Chemical Reviews, 2010, 110, 2839. 6 Yang B, Chen Y, Shi J. Chemical Reviews, 2019, 119, 4881. 7 Zhang X, Yang Q, Lang Y, et al. Analytical Chemistry, 2020, 92, 12400. 8 Li X, Lovell J F, Yoon J, et al. Nature Reviews Clinical Oncology, 2020, 17, 657. 9 Roberts W G, Smith K M, Mcculiough J L, et al. Photochemistry and Photobiology, 1989, 49, 431. 10 Lin X, Song J, Chen X, et al. Angewandte Chemie International Edition, 2020, 59, 14212. 11 Hill C R, Bamber J C, Ter Haar G R. The Journal of the Acoustical Society of America, 2004, 116, 15. 12 Tang J, Guha C, Tomé W A. Technology in Cancer Research and Treatment, 2015, 14, 221. 13 Yumita N, Nishigaki R, Umemura K, et al. Japanese Journal of Cancer Research, 1989, 80, 219. 14 Sun L, Wang P, Zhang J, et al. Biomaterials Science, 2021, 9, 1945. 15 Wang X, Zhong X, Gong F, et al. Materials Horizons, 2020, 7, 2028. 16 Sviridov A P, Osminkina L A, Nikolaev A L, et al. Applied Physics Letters, 2015, 107, 123107. 17 Liu R, Zhang Q, Lang Y, et al. Photodiagnosis and Photodynamic The-rapy, 2017, 19, 159. 18 Rosenthal I, Sostaric J Z, Riesz P. Ultrasonics Sonochemistry, 2004, 11, 349. 19 Sehgal C, Sutherland R G, Verrall R E. Journal of Physical Chemistry, 1980, 84, 388. 20 Gong Z, Dai Z. Advanced Science, 2021, 8, 2002178. 21 Bogdan J, Plawinska-Czarnak J, Zarzyńska J. Nanoscale Research Letters, 2017, 12, 1. 22 Linsebigler A L, Lu G, Yates J T. Chemical Reviews, 1995, 95, 735. 23 Ouyang S, Ye J. Journal of the American Chemical Society, 2011, 133, 7757. 24 He W, Jia H, Wamer W G, et al. Journal of Catalysis, 2014, 320, 97. 25 Fan Z, Chen D, Deng C X. Journal of Controlled Release, 2013, 170, 401. 26 Zhou Y, Cui J, Deng C X. Biophysical Journal, 2008, 94, 51. 27 Deng C X, Sieling F, Pan H, et al. Ultrasound in Medicine & Biology, 2004, 30, 519. 28 Tata D B, Dunn F, Tindall D J. Biochemical and Biophysical Research Communications, 1997, 234, 64. 29 Malietzis G, Monzon L, Hand J, et al. British Journal of Radiology, 2013, 86, 1. 30 Kennedy J E. Nature Reviews Cancer, 2005, 5, 321. 31 Castano A P, Demidova T N, Hamblin M R. Photodiagnosis and Photodynamic Therapy, 2004, 1, 279. 32 Xu M, Zhou L, Zheng L, et al. Cancer Letters, 2021, 497, 229. 33 Kuroki M, Hachimine K, Abe H, et al. Anticancer Research, 2007, 27, 3673. 34 Zeng Y, Liu H C, Wang J S, et al. Catalysis Science & Technology, 2020, 10, 2329. 35 Harada Y, Ogawa K, Irie Y, et al. Journal of Controlled Release, 2011, 149, 190. 36 Liu Y, Wang Y, Zhen W, et al. Biomaterials, 2020, 251, 120075. 37 Ebrahimi F A, Zarepour A, Zarrabi A, et al. Journal of Magnetism and Magnetic Materials, 2015, 394, 44. 38 Zhu Y, Hong W, Liu X, et al. Nanoscale, 2021, 13, 15699. 39 Liang S, Deng X, Chang Y, et al. Nano Letter, 2019, 19, 4134. 40 Liang S, Liu B, Xiao X, et al. Advanced Materials, 2021, 33, 2101467. 41 Cao Y, Wu T, Dai W, et al. Chemistry of Materials, 2019, 11, 50. 42 Wang X, Zhong X, Bai L, et al. Journal of the American Chemical Society, 2020, 142, 6527. 43 Gong F, Cheng L, Yang N, et al. Advanced Materials, 2019, 31, 1900730. 44 Shen S, Wu L, Liu J, et al. International Journal of Pharmaceutics, 2015, 486, 380. 45 Kim S, Im S, Park E Y, et al. Nanomedicine:Nanotechnology, Biology and Medicine, 2020, 24, 102110. 46 Li C, Yang X Q, An J, et al. Theranostics, 2020, 10, 867. 47 Li Z, Zhang T, Fan F, et al. Journal of Physical Chemistry Letters, 2020, 11, 1228. 48 Zhu P, Chen Y, Shi J. Advanced Materials, 2020, 32, 2001976. 49 Hong K S, Xu H, Konishi H, et al. Journal of Physical Chemistry Letters, 2010, 1, 997. 50 Jiang Z, Tan X, Huang Y. Science of the Total Environment, 2022, 806, 150924. 51 Flint E B, Suslick K S. Science, 1991, 253, 1397. 52 Wang Y, Xu Y, Dong S, et al. Nature Communications , 2021, 12, 1. 53 Wu M, Zhang Z, Liu Z, et al. Nano Today, 2021, 37, 101104. 54 Feng X, Ma L, Lei J, et al. ACS Nano, 2022, 16, 2546. 55 Low S P, Voelcker N H, Canham L T, et al. Biomaterials, 2009, 30, 2873. 56 Ma M, Xu H X, Chen H R, et al. Advanced Materials, 2014, 26, 7378. 57 Park J H, Gu L, Von Maltzahn G, et al. Nature Materials, 2009, 8, 331. 58 Osminkina L A, Gongalsky M B, Motuzuk A V, et al. Applied Physics B:Lasers and Optics, 2011, 105, 665. 59 Gross E, Kovalev D, Künzner N, et al. Physical Review B, 2003, 68, 115405. 60 Sviridov A P, Andreev V G, Ivanova E M, et al. Applied Physics Letters, 2013, 103, 193110. 61 Sviridov A P, Osminkina L A, Nikolaev A L, et al. Applied Physics Letters, 2015, 107, 123107. 62 Wu T, Liu Y, Cao Y, et al. Advanced Materials, 2022, 34, 2110364. 63 Zhang K, Xu H, Jia X, et al. ACS Nano, 2016, 10, 10816. 64 Zhao P, Deng Y, Xiang G, et al. International Journal of Nanomedicine, 2021, 16, 4615. 65 Liu J, Tan Y, He K, et al. ACS Nano, 2020, 14, 13975. 66 Vankayala R, Sagadevan A, Vijayaraghavan P, et al. Angewandte Chemie International Edition, 2011, 50, 10640. 67 Shanei A, Akbari-Zadeh H. Journal of Korean Medical Science, 2019, 34, 1. 68 Brazzale C, Canaparo R, Racca L, et al. Nanomedicine, 2016, 12, 3053. 69 Liang S, Deng X, Xu G, et al. Advanced Functional Materials, 2020, 30, 1908598. 70 Sun L, Wang X, Gong F, et al. Theranostics, 2021, 11, 9234. 71 Wang H, Liu X, Yan X, et al. Chemical Science, 2022, 13, 6704. 72 Yumita N, Iwase Y, Imaizumi T, et al. Anticancer Research, 2013, 27, 3673. 73 Yumita N, Iwase Y, Umemura S I, et al. Anticancer Research, 2020, 40, 2549. 74 Ju Y Y, Shi X X, Xu S Y, et al. Advanced Science, 2022, 9, 2105034. 75 Dai C, Zhang S, Liu Z, et al. ACS Nano, 2017, 11, 9467.