Review of Pozzolanic Activity Detection Methods for Pozzolanic Materials
SUN Zhenping1,2,3,*, YAN Zhuhua1,2,3, ZHANG Ting1,2, MU Fanyuan1,2, WANG Chunsheng4, YANG Sheng4, SUN Qiyan4
1 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China 2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China 3 Research Center of Intelligent Evaluation and Restoration Engineering Technology of Urban Pipe Network of Shanghai Water Bureau, Shanghai 201900, China 4 Xizang Wuyang Industry Co., Ltd., Lasa 850000, China
Abstract: This review categorizes the pozzolanic activity detection methods of pozzolanic materials into direct methods and indirect methods. The direct methods include lime absorption method, pozzolanic reaction degree evaluation and acid/alkali dissolution test; while the indirect methods include physical property method, hydration reaction calorimetry and physical/chemical characteristic parameter method. In order to correctly guide the application of these pozzolanic activity detection methods, this paper introduces and compares the principles and characteristics of each detection method in detail. The direct method can directly measure the degree of reaction between pozzolanic material and Ca(OH)2, but its operation and analysis process are relatively complicated. The indirect method can evaluate the pozzolanic activity by measuring the influence of the pozzolanic material on the physical and chemical properties of the system or the physical/chemical characteristic parameters of the material itself. Further, we clarify the application scope of each detection method from the perspective of material science. Users should select the approp-riate pozzolanic activity detection method according to the characteristics of pozzolanic material.
通讯作者:
孙振平,同济大学材料科学与工程学院教授、博士研究生导师。1992年7月获同济大学无机非金属材料学士学位,1995年3月获同济大学无机非金属材料硕士学位,2002年7月获同济大学材料学博士学位,后于同济大学材料科学与工程学院工作至今。目前主要从事混凝土外加剂和高性能混凝土、固体废弃物资源化利用、可持续混凝土、先进水泥基材料的性能表征技术等方面的研究工作。发表论文100余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Mate-rials等。sunzhptongji@163.com
引用本文:
孙振平, 闫珠华, 张挺, 穆帆远, 王春胜, 羊省, 孙其岩. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(1): 22020082-6.
SUN Zhenping, YAN Zhuhua, ZHANG Ting, MU Fanyuan, WANG Chunsheng, YANG Sheng, SUN Qiyan. Review of Pozzolanic Activity Detection Methods for Pozzolanic Materials. Materials Reports, 2024, 38(1): 22020082-6.
1 AASHTO M 295-2019, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, American Association of State Highway and Transportation Officials, 2019. 2 Zhang S Y, Huang S W. Materials Reports, 2011, 25(15), 104 (in Chinese). 张思宇, 黄少文. 材料导报, 2011, 25(15), 104. 3 Shi C J. Alkali-activated cements and concretes, Chemical Industry Press, China, 2008, pp. 6 (in Chinese). 史才军. 碱-激发水泥和混凝土, 化学工业出版社, 2008, pp. 6. 4 Juenger M, Bernal S A, Snellings R. Cement and Concrete Research, 2019, 122, 257. 5 Skibsted J, Snellings R. Cement and Concrete Research, 2019, 124, 105799. 6 Scrivener K, Martirena F, Bishnoi S, et al. Cement and Concrete Research, 2018, 114, 49. 7 Kang S H, Hong S G, Moon J. Cement and Concrete Research, 2018, 115, 389. 8 Lothenbach B, Scrivener K, Hooton R D. Cement and Concrete Research, 2011, 41, 1244. 9 Cao Y, Wang Y, Zhang Z, et al. Composites Part B Engineering, 2021(1), 108636. 10 Ding Y N, Dong H W, Cao M L. Journal of Building Materials, 2015, 18(5), 151 (in Chinese). 丁一宁, 董惠文, 曹明莉. 建筑材料学报, 2015, 18(5), 151. 11 Donatello S, Tyrer M, Cheeseman C R. Cement and Concrete Composites, 2010, 32(2), 121. 12 Tironi A, Trezza M A, Scian A N, et al. Cement and Concrete Compo-sites, 2013, 37(1), 319. 13 Qian J, Qin J, Zhang Z, et al. Advances in Cement Research, 2015, 28(3), 1. 14 Yamamoto T, Kanazu T, Nambu M. Fuel, 2006, 85(16), 2345. 15 Jang H S, Lim Y T, Kang J H, et al. Construction and Building Materials, 2018, 166, 257. 16 Soin A V, Catalan L J J, Kinrade S D. Cement and Concrete Research, 2013, 48, 17. 17 Korpa A, Kowald T, Trettin R. Cement and Concrete Research, 2009, 39(2), 69. 18 Zajac M, Durdzinski P, Stabler C, et al. Cement and Concrete Research, 2018, 106, 91. 19 Snellings R, Salze A, Scrivener K L. Cement and Concrete Research, 2014, 64, 89. 20 Stetsko Y P, Shanahan N, Deford H, et al. Journal of Applied Crystallography, 2017, 50(2), 498. 21 Poon C, Lam L, Kou S C. Cement and Concrete Research, 2001, 31(9), 1301. 22 Du H J, Pang S D. Construction and Building Materials, 2020, 264, 120152. 23 Torres S M, Lima V E, Basto P, et al. Construction and Building Materials, 2020, 264, 120684. 24 Haha M B, Weerdt K D, Lothenbach B. Cement and Concrete Research, 2010, 40(11), 1620. 25 Wang P M, Feng S X, Liu X P. Journal of Building Materials, 2005, 8(6), 646 (in Chinese). 王培铭, 丰曙霞, 刘贤萍. 建筑材料学报, 2005, 8(6), 646. 26 Yan Z H, Sun Z P, Yang H J, et al. Journal of Materials in Civil Engineering, 2022, 34(12), 04022344. 27 Chen P X. The application of BEI-GSR analysis on the microstructure of the blended cement paste. Master’s Thesis, South China University of Technology, China, 2013 (in Chinese). 陈培鑫. BEI-GSR分析技术在复合水泥浆体结构中的应用研究. 硕士学位论文, 华南理工大学, 2013. 28 Fernandez R, Martirena F, Scrivener K L. Cement and Concrete Research, 2011, 41(1), 113. 29 Xu H Z, Song Y M, Liu J X, et al. Journal of Building Materials, 2011(4), 564 (in Chinese). 徐惠忠, 宋远明, 刘景相, 等. 建筑材料学报, 2011(4), 564. 30 Jia Y D, Yan P Y. Journal of the Chinese Ceramic Society, 2009, 37(7), 6 (in Chinese). 贾耀东, 阎培渝. 硅酸盐学报, 2009, 37(7), 6. 31 Tkaczewska E, Mroz R, Loj G. Construction and Building Materials, 2012, 28(1), 633. 32 Yan Z H, Sun Z P, Zhao Y H. Structural Concrete, 2022, 23(4), 2419. 33 Cordeiro G C, Kurtis K E. Cement and Concrete Research, 2017, 97, 41. 34 Sinthaworn S, Nimityongskul P. Cement and Concrete Composites, 2011, 33(5), 622. 35 Katare V D, Madurwar M V. Journal of Cleaner Production, 2020, 242, 118431. 36 Cordeiro G C, Tavares L M, Filho R T. Cement and Concrete Research, 2016, 89, 269. 37 Uzal B, Turanli L, Yucel H, et al. Cement and Concrete Research, 2010, 40(3), 398. 38 Jansen D, Goetz-Neunhoeffer F, Lothenbach B, et al. Cement and Concrete Research, 2012, 42(1), 134. 39 GB/T 12959-2008, Test methods for heat of hydration of cement, Stan-dards Press of China,China, 2005 (in Chinese). GB/T 12959-2008《水泥水化热测定方法》, 中国标准出版社, 2005. 40 Avet F, Snellings R, Alujas D A, et al. Cement and Concrete Research, 2016, 85, 1. 41 Al-Shmaisani S, Kalina R D, Ferron R D, et al. Cement and Concrete Research, 2022, 153, 106709. 42 Snellings R, Kazemi-Kamyab H, Nielsen P, et al. Frontiers in Built Environment, 2021, 7(4), 670996. 43 Hallet V, Belie N D, Pontikes Y. Construction and Building Materials, 2020, 257, 119400. 44 Kasaniya M, Alaibani A, Thomas M D, et al. Construction and Building Materials, 2022, 325, 126781. 45 Newlands K C, Foss M, Matchei T, et al. Journal of the American Ceramic Society, 2017, 100(5), 1941. 46 Yan Z H, Sun Z P, Yang J B, et al. Construction and Building Materials, 2021, 266(7), 120900. 47 Li C. Research on the glass phase of slag, high calcium fly ash and low calcium fly ash and their hydration mechanism. Ph. D. Thesis, Tsinghua University, China, 2011 (in Chinese). 厉超. 矿渣, 高/低钙粉煤灰玻璃体及其水化特性研究. 博士学位论文, 清华大学, 2011. 48 Sun Z P, Li C J, Li Q. In: Conference Record of the 6th National Low-field Nuclear Magnetic Resonance Technology and Application Sympo-sium. Shanghai, 2014, pp. 154 (in Chinese). 孙振平, 李春景, 李奇. 第六届全国低场核磁共振技术与应用研讨会. 上海, 2014, pp. 154. 49 Sun Z P, Yu Y, Pang M, et al. Materials Reports, 2011, 25(7), 110 (in Chinese). 孙振平, 俞洋, 庞敏, 等. 材料导报, 2011, 25(7), 110. 50 Kurumisawa K, Nawa T, Owada H, et al. Cement and Concrete Research, 2013, 52, 190. 51 Feng Y, Chen Q S, Zhou Y L, et al. Construction and Building Materials, 2020, 240, 117970.