Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22020082-6    https://doi.org/10.11896/cldb.22020082
  无机非金属及其复合材料 |
火山灰质材料的火山灰活性检测方法综述
孙振平1,2,3,*, 闫珠华1,2,3, 张挺1,2, 穆帆远1,2, 王春胜4, 羊省4, 孙其岩4
1 同济大学先进土木工程材料教育部重点实验室,上海 201804
2 同济大学材料科学与工程学院,上海 201804
3 上海市水务局城市管网智能评估与修复工程技术研究中心,上海 201900
4 西藏吾羊实业有限公司,拉萨 850000
Review of Pozzolanic Activity Detection Methods for Pozzolanic Materials
SUN Zhenping1,2,3,*, YAN Zhuhua1,2,3, ZHANG Ting1,2, MU Fanyuan1,2, WANG Chunsheng4, YANG Sheng4, SUN Qiyan4
1 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
3 Research Center of Intelligent Evaluation and Restoration Engineering Technology of Urban Pipe Network of Shanghai Water Bureau, Shanghai 201900, China
4 Xizang Wuyang Industry Co., Ltd., Lasa 850000, China
下载:  全 文 ( PDF ) ( 1908KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文将火山灰质材料的火山灰活性检测方法分为直接法和间接法两大类。其中,直接法包括石灰吸收值法,火山灰反应程度评定法和酸、碱溶出度法;而间接法包括物理性能法,水化反应放热量法和物理、化学特征参数法。为正确指导火山灰活性检测方法的应用,本文详细介绍并比较了各检测方法的原理和特点。笔者认为,直接法可直接测定出火山灰质材料与Ca(OH)2反应的程度,但其操作和分析过程相对复杂;间接法可通过测定火山灰质材料对体系物化性能的影响或材料自身的物理、化学特征参数来评价其火山灰活性。本文从材料科学的角度厘清了各检测方法的适用对象,认为应根据不同的火山灰质材料的特性选择与其相适应的火山灰活性检测方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙振平
闫珠华
张挺
穆帆远
王春胜
羊省
孙其岩
关键词:  火山灰质材料  火山灰活性  直接法  间接法    
Abstract: This review categorizes the pozzolanic activity detection methods of pozzolanic materials into direct methods and indirect methods. The direct methods include lime absorption method, pozzolanic reaction degree evaluation and acid/alkali dissolution test; while the indirect methods include physical property method, hydration reaction calorimetry and physical/chemical characteristic parameter method. In order to correctly guide the application of these pozzolanic activity detection methods, this paper introduces and compares the principles and characteristics of each detection method in detail. The direct method can directly measure the degree of reaction between pozzolanic material and Ca(OH)2, but its operation and analysis process are relatively complicated. The indirect method can evaluate the pozzolanic activity by measuring the influence of the pozzolanic material on the physical and chemical properties of the system or the physical/chemical characteristic parameters of the material itself. Further, we clarify the application scope of each detection method from the perspective of material science. Users should select the approp-riate pozzolanic activity detection method according to the characteristics of pozzolanic material.
Key words:  pozzolanic cementitious material    pozzolanic activity    direct method    indirect method
发布日期:  2024-01-16
ZTFLH:  TU525  
基金资助: 国家自然科学基金(51678441);上海市科委项目(19DZ1201404;19DZ1202702);上海市建委项目(2021-001-002);重庆市科技局专项项目(cstc2020kqjscx-phxm1594)
通讯作者:  孙振平,同济大学材料科学与工程学院教授、博士研究生导师。1992年7月获同济大学无机非金属材料学士学位,1995年3月获同济大学无机非金属材料硕士学位,2002年7月获同济大学材料学博士学位,后于同济大学材料科学与工程学院工作至今。目前主要从事混凝土外加剂和高性能混凝土、固体废弃物资源化利用、可持续混凝土、先进水泥基材料的性能表征技术等方面的研究工作。发表论文100余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Mate-rials等。sunzhptongji@163.com   
引用本文:    
孙振平, 闫珠华, 张挺, 穆帆远, 王春胜, 羊省, 孙其岩. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(1): 22020082-6.
SUN Zhenping, YAN Zhuhua, ZHANG Ting, MU Fanyuan, WANG Chunsheng, YANG Sheng, SUN Qiyan. Review of Pozzolanic Activity Detection Methods for Pozzolanic Materials. Materials Reports, 2024, 38(1): 22020082-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020082  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22020082
1 AASHTO M 295-2019, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, American Association of State Highway and Transportation Officials, 2019.
2 Zhang S Y, Huang S W. Materials Reports, 2011, 25(15), 104 (in Chinese).
张思宇, 黄少文. 材料导报, 2011, 25(15), 104.
3 Shi C J. Alkali-activated cements and concretes, Chemical Industry Press, China, 2008, pp. 6 (in Chinese).
史才军. 碱-激发水泥和混凝土, 化学工业出版社, 2008, pp. 6.
4 Juenger M, Bernal S A, Snellings R. Cement and Concrete Research, 2019, 122, 257.
5 Skibsted J, Snellings R. Cement and Concrete Research, 2019, 124, 105799.
6 Scrivener K, Martirena F, Bishnoi S, et al. Cement and Concrete Research, 2018, 114, 49.
7 Kang S H, Hong S G, Moon J. Cement and Concrete Research, 2018, 115, 389.
8 Lothenbach B, Scrivener K, Hooton R D. Cement and Concrete Research, 2011, 41, 1244.
9 Cao Y, Wang Y, Zhang Z, et al. Composites Part B Engineering, 2021(1), 108636.
10 Ding Y N, Dong H W, Cao M L. Journal of Building Materials, 2015, 18(5), 151 (in Chinese).
丁一宁, 董惠文, 曹明莉. 建筑材料学报, 2015, 18(5), 151.
11 Donatello S, Tyrer M, Cheeseman C R. Cement and Concrete Composites, 2010, 32(2), 121.
12 Tironi A, Trezza M A, Scian A N, et al. Cement and Concrete Compo-sites, 2013, 37(1), 319.
13 Qian J, Qin J, Zhang Z, et al. Advances in Cement Research, 2015, 28(3), 1.
14 Yamamoto T, Kanazu T, Nambu M. Fuel, 2006, 85(16), 2345.
15 Jang H S, Lim Y T, Kang J H, et al. Construction and Building Materials, 2018, 166, 257.
16 Soin A V, Catalan L J J, Kinrade S D. Cement and Concrete Research, 2013, 48, 17.
17 Korpa A, Kowald T, Trettin R. Cement and Concrete Research, 2009, 39(2), 69.
18 Zajac M, Durdzinski P, Stabler C, et al. Cement and Concrete Research, 2018, 106, 91.
19 Snellings R, Salze A, Scrivener K L. Cement and Concrete Research, 2014, 64, 89.
20 Stetsko Y P, Shanahan N, Deford H, et al. Journal of Applied Crystallography, 2017, 50(2), 498.
21 Poon C, Lam L, Kou S C. Cement and Concrete Research, 2001, 31(9), 1301.
22 Du H J, Pang S D. Construction and Building Materials, 2020, 264, 120152.
23 Torres S M, Lima V E, Basto P, et al. Construction and Building Materials, 2020, 264, 120684.
24 Haha M B, Weerdt K D, Lothenbach B. Cement and Concrete Research, 2010, 40(11), 1620.
25 Wang P M, Feng S X, Liu X P. Journal of Building Materials, 2005, 8(6), 646 (in Chinese).
王培铭, 丰曙霞, 刘贤萍. 建筑材料学报, 2005, 8(6), 646.
26 Yan Z H, Sun Z P, Yang H J, et al. Journal of Materials in Civil Engineering, 2022, 34(12), 04022344.
27 Chen P X. The application of BEI-GSR analysis on the microstructure of the blended cement paste. Master’s Thesis, South China University of Technology, China, 2013 (in Chinese).
陈培鑫. BEI-GSR分析技术在复合水泥浆体结构中的应用研究. 硕士学位论文, 华南理工大学, 2013.
28 Fernandez R, Martirena F, Scrivener K L. Cement and Concrete Research, 2011, 41(1), 113.
29 Xu H Z, Song Y M, Liu J X, et al. Journal of Building Materials, 2011(4), 564 (in Chinese).
徐惠忠, 宋远明, 刘景相, 等. 建筑材料学报, 2011(4), 564.
30 Jia Y D, Yan P Y. Journal of the Chinese Ceramic Society, 2009, 37(7), 6 (in Chinese).
贾耀东, 阎培渝. 硅酸盐学报, 2009, 37(7), 6.
31 Tkaczewska E, Mroz R, Loj G. Construction and Building Materials, 2012, 28(1), 633.
32 Yan Z H, Sun Z P, Zhao Y H. Structural Concrete, 2022, 23(4), 2419.
33 Cordeiro G C, Kurtis K E. Cement and Concrete Research, 2017, 97, 41.
34 Sinthaworn S, Nimityongskul P. Cement and Concrete Composites, 2011, 33(5), 622.
35 Katare V D, Madurwar M V. Journal of Cleaner Production, 2020, 242, 118431.
36 Cordeiro G C, Tavares L M, Filho R T. Cement and Concrete Research, 2016, 89, 269.
37 Uzal B, Turanli L, Yucel H, et al. Cement and Concrete Research, 2010, 40(3), 398.
38 Jansen D, Goetz-Neunhoeffer F, Lothenbach B, et al. Cement and Concrete Research, 2012, 42(1), 134.
39 GB/T 12959-2008, Test methods for heat of hydration of cement, Stan-dards Press of China,China, 2005 (in Chinese).
GB/T 12959-2008《水泥水化热测定方法》, 中国标准出版社, 2005.
40 Avet F, Snellings R, Alujas D A, et al. Cement and Concrete Research, 2016, 85, 1.
41 Al-Shmaisani S, Kalina R D, Ferron R D, et al. Cement and Concrete Research, 2022, 153, 106709.
42 Snellings R, Kazemi-Kamyab H, Nielsen P, et al. Frontiers in Built Environment, 2021, 7(4), 670996.
43 Hallet V, Belie N D, Pontikes Y. Construction and Building Materials, 2020, 257, 119400.
44 Kasaniya M, Alaibani A, Thomas M D, et al. Construction and Building Materials, 2022, 325, 126781.
45 Newlands K C, Foss M, Matchei T, et al. Journal of the American Ceramic Society, 2017, 100(5), 1941.
46 Yan Z H, Sun Z P, Yang J B, et al. Construction and Building Materials, 2021, 266(7), 120900.
47 Li C. Research on the glass phase of slag, high calcium fly ash and low calcium fly ash and their hydration mechanism. Ph. D. Thesis, Tsinghua University, China, 2011 (in Chinese).
厉超. 矿渣, 高/低钙粉煤灰玻璃体及其水化特性研究. 博士学位论文, 清华大学, 2011.
48 Sun Z P, Li C J, Li Q. In: Conference Record of the 6th National Low-field Nuclear Magnetic Resonance Technology and Application Sympo-sium. Shanghai, 2014, pp. 154 (in Chinese).
孙振平, 李春景, 李奇. 第六届全国低场核磁共振技术与应用研讨会. 上海, 2014, pp. 154.
49 Sun Z P, Yu Y, Pang M, et al. Materials Reports, 2011, 25(7), 110 (in Chinese).
孙振平, 俞洋, 庞敏, 等. 材料导报, 2011, 25(7), 110.
50 Kurumisawa K, Nawa T, Owada H, et al. Cement and Concrete Research, 2013, 52, 190.
51 Feng Y, Chen Q S, Zhou Y L, et al. Construction and Building Materials, 2020, 240, 117970.
[1] 魏冠奇, 王琰帅, 洪舒贤, 董必钦, 邢锋. 工程开挖土的资源化再利用研究进展[J]. 材料导报, 2022, 36(13): 20110138-9.
[2] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[3] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[4] 陈文华, 黄志义. 集料和纤维掺量对LTCC力学性能和微观结构的影响[J]. 材料导报, 2020, 34(18): 18049-18055.
[5] 张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed