Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 20040024-5    
  无机非金属及其复合材料 |
高温处理后玄武岩纤维水泥基复合材料应变率效应研究
张娜1,2, 周健2
1 陆军军事交通学院国防交通系,天津 300161
2 河北工业大学土木与交通学院,天津 300401
Study on Strain Rate Effect of Basalt Fiber Cement Composites After High Temperature Treatment
ZHANG Na1,2, ZHOU Jian2
1 Department of Defense and Transportation, Army Military Transportation University, Tianjin 300161, China
2 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 4943KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析高温和应变率对玄武岩纤维水泥基复合材料动态力学性能的影响规律,采用准静态实验测得其单轴压缩强度,利用Φ50 mm分离式霍普金森压杆(SHPB)进行动态压缩实验,得到玄武岩纤维水泥基复合材料在不同温度处理后和不同加载速率下的应力-应变曲线,并分析不同温度下动态强度增长因子(DIF)随应变率的变化规律。结果表明:高温处理后玄武岩纤维水泥基复合材料的静态压缩强度、动态压缩强度、DIF随应变率的增加而增大;在20~400 ℃范围内,相近应变率下,玄武岩纤维水泥基复合材料的动态抗压强度在200 ℃时达到最大值而后降低;DIF呈现先增大后减小的趋势;与普通混凝土的DIF相比,不同温度下玄武岩纤维水泥基复合材料的DIF较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张娜
周健
关键词:  玄武岩纤维水泥基复合材料  高温  静态压缩  动态压缩  应变率效应    
Abstract: In order to analyze the influence of high temperature and strain rate on the dynamic mechanical properties of basalt fiber cement composites, the quasi-static test was used to measure its uniaxial compressive strength, and the Φ50 mm split Hopkinson pressure bar (SHPB) was used to perform dynamic compression tests. The stress-strain curves of the material under different temperature conditions and different strain rates were analyzed. The dynamic increase factor (IDF) which changes with strain rates under different temperature conditions were analyzed. The results show that: the static compressive strength, the dynamic compressive strength of basalt fiber cement composites after high temperature and DIF increase with the strain rate increasing; in the range of 20—400 ℃, under the similar strain rate, the dynamic compressive strength of the basalt fiber cement composites reaches the maximum value at 200 ℃ and decrease then; DIF shows a trend of increasing first and decreasing then; compared with the DIF of ordinary concrete, the DIF of basalt fiber cement composites is smaller.
Key words:  basalt fiber cement composites    high temperature    static compression    dynamic compression    strain rate effect
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  O383  
基金资助: 国家自然科学基金(51878238)
通讯作者:  zn2011@126.com   
作者简介:  张娜,博士,毕业于河北工业大学,现为陆军军事交通学院国防交通系讲师,目前主要从事纤维增强水泥基复合材料设计及其抗爆抗冲击力学性能等方面的研究工作。
引用本文:    
张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
ZHANG Na, ZHOU Jian. Study on Strain Rate Effect of Basalt Fiber Cement Composites After High Temperature Treatment. Materials Reports, 2022, 36(Z1): 20040024-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/20040024
1 Adel K,Djamel A, Francois D, et al. Materials and Design, 2014, 63(11), 493.
2 Li V C, Mishra D K, Naaman A E, et al. Journal of Advanced Cement Based Materials, 1994, l(3), 142.
3 徐世烺,李庆华.超高韧性水泥基复合材料在高性能建筑结构中的基本应用, 科学出版社, 2010, pp, 5.
4 王文炜,况宇亮,田俊,等.应用基础与工程科学学报,2016, 24(1), 148.
5 Wang Z B, Zhang J, Wang J H, et al. Journal of Composite Materials, 2014, 49(18), 2169.
6 Yu J, Lin J, Zhang Z, et al. Construction and Building Materials, 2015, 99(9), 82.
7 Bhat P S, Chang V, Li M. Construction and Building Materials, 2014, 69(8), 370.
8 Kizilkanat A B, Kabay N, Akyüncü V, et al. Construction and Building Materials, 2015, 100(10), 218.
9 Jiang C H, Fan K, Wu F, et al. Materials Design, 2014, 58(2), 187.
10 Branston J, Das S, Kenno S Y, et al. Construction and Building Mate-rials, 2016, 124(2), 878.
11 Lopresto V, Leone C, de Lorio L. Composites Part B-Engineering, 2011, 42(4), 717.
12 Borhan T M. Materials Design, 2012, 42(5), 265.
13 Sim J S, Park C W, Moon D Y. Composites Part B-Engineering, 2005, 36(6), 504.
14 Ralegaonkar R, Gavali H, Aswath P, et al. Construction and Building Materials, 2018, 164(12), 589.
15 Ravichandran G, Subhash G. Journal of the American Ceramic Society,1994, 77(11), 263.
16 Special Activity Group 5. Fib model code for concrete structures 2010, Wilhelm Ernst & Sohn, GER, 2011, pp, 248.
[1] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[2] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[3] 卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
[4] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[5] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[6] 龙伟民, 秦建, 路全彬, 刘大双, 吴爱萍. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 21090163-5.
[7] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[8] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[9] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[10] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[11] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[12] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[13] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[14] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[15] 吕闹, 汪海波, 宗琦. 碳纤维布加固高强砂浆动态压缩试验研究[J]. 材料导报, 2022, 36(10): 20100144-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed