Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1174-1180    https://doi.org/10.11896/j.issn.1005-023X.2018.07.019
  材料综述 |
水泥基材料硫酸盐侵蚀机理的研究进展
张晓佳, 张高展, 孙道胜, 刘开伟
安徽建筑大学先进建筑材料安徽省重点实验室,合肥 230022
Progress of the Mechanism of Sulfate Attack on Cement-based Materials
ZHANG Xiaojia, ZHANG Gaozhan, SUN Daosheng, LIU Kaiwei
Advanced Building Materials Key Laboratory of Anhui Province, Anhui Jianzhu University, Hefei 230022
下载:  全 文 ( PDF ) ( 1383KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫酸盐侵蚀是影响水泥基材料结构耐久性的重要因素。本文在分析硫酸盐侵蚀对水泥基胶凝材料铝相水化产物和C-S-H凝胶影响的基础上,归纳了现有水泥基胶凝材料硫酸盐侵蚀的作用机理,提出了硫酸盐侵蚀作用下水泥基材料微结构研究中存在的不足和进一步的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓佳
张高展
孙道胜
刘开伟
关键词:  水泥基材料  硫酸盐侵蚀机理  铝相水化产物  C-S-H凝胶    
Abstract: Sulfate attack is an important factor that affects the durability of cement-based materials. The effects of sulfate hydrate on the aluminum phase hydration products and C-S-H gel of cement-based material are analyzed, and the mechanism of sulfate attack on cement-based materials are summarized in this paper. Finally the deficiencies and future prospect on the study of microstructure of cement-based materials under sulfate attack are discussed.
Key words:  cement-based materials    mechanism of sulfate attack    aluminum phase hydration products    C-S-H gel
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51578004;51608004;51778513);国家重点研发计划“重点基础材料技术提升与产业化”重点专项课题(2017YFB0310001);安徽省自然科学基金(1708085QE102)
通讯作者:  张高展:通信作者,男,1981年生,博士,副教授,主要从事先进水泥基复合材料研究 E-mail:gaozhanzhang@126.com   
作者简介:  张晓佳:女,1993年生,硕士研究生,研究方向为水泥基材料的硫酸盐侵蚀机理 E-mail:2475489953@qq.com
引用本文:    
张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
ZHANG Xiaojia, ZHANG Gaozhan, SUN Daosheng, LIU Kaiwei. Progress of the Mechanism of Sulfate Attack on Cement-based Materials. Materials Reports, 2018, 32(7): 1174-1180.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.019  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1174
1 Li Hua. Testing and analysis on microstructure evolution of cement-based materials under sulfate attack[D].Nanjing:Southeast University,2012(in Chinese).
李华.硫酸盐侵蚀下水泥基材料微结构演变的测试与分析研究[D].南京:东南大学,2012.
2 Li H, Sun W, Zuo X B. Effect of mineral admixtures on sulfate attack resistance of cement-based materials[J].Journal of the Chinese Ceramic Society,2012,40(8):1119(in Chinese).
李华,孙伟,左晓宝.矿物掺合料改善水泥基材料抗硫酸盐侵蚀性能的微观分析[J].硅酸盐学报,2012,40(8):1119.
3 Mehta P K, Wang S. Expansion of ettringite by water adsorption[J].Cement & Concrete Research,1982,12(1):121.
4 Skalny J, Marchand J, Odler I. Sulfate attack on concrete[M].London:Spon Press,2002.
5 Yu C, Sun W, Scrivener K. Mechanism of expansion of mortars immersed in sodium sulfate solutions[J].Cement & Concrete Research,2013,43:105.
6 Müllauer W, Beddoe R E, Heinz D. Sulfate attack expansion mechanisms[J].Cement & Concrete Research,2013,52:208.
7 Whittaker M, Zajac M, Haha M B, et al. The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends[J].Cement & Concrete Research,2014,66(12):91.
8 Lee S T, Moon H Y, Swamy R N. Sulfate attack and role of silica fume in resisting strength loss[J].Cement & Concrete Composites,2005,27(1):65.
9 Hekal E E, Kishar E, Mostafa H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J].Cement & Concrete Research,2002,32(9):1421.
10Liu K W, Deng M, Mo L W, et al. Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack[J].Advances in Cement Research,2015,27(8):477.
11丁庆军,弓子成,朱玉雪,等.温度对高掺量矿渣的水泥浆体抗硫酸盐侵蚀性能的影响[C]∥混凝土与水泥制品学术讨论会.北京,2013:314.
12Zhang Gaozhan. The Microstructure formation and evolution mechanism of C-S-H gel in portland cement pastes with granulated blast furnace slag under the attack of corrosive ions[D].Wuhan:Wuhan University of Technology,2016(in Chinese).
张高展.侵蚀性离子作用下矿渣-水泥复合浆体C-S-H微结构形成与演变机理[D].武汉:武汉理工大学,2016.
13 Hu Chenguang. Effect of temperature and sulfate attack on microstructure of C-S-H in portland cement pastes with fly ash[D].Wuhan:Wuhan University of Technology,2014(in Chinese).
胡晨光.温度和硫酸盐侵蚀对粉煤灰水泥浆体C-S-H微结构的影响研究[D].武汉:武汉理工大学,2014.
14 袁润章.胶凝材料学[M].武汉:武汉理工大学出版社,1996.
15 Zhang L, Yang D Y. Progress of sulfate attack process of concrete and its main products[J].China Concrere and Cement Products,2006(6):19(in Chinese).
张磊,杨鼎宜.混凝土硫酸盐侵蚀过程及主要产物研究进展[J].混凝土与水泥制品,2006(6):19.
16 Ding Q J, He Z. Advances in research on the formation mechanism of cementitious paste microstructure in current concrete[J].Materials China,2009,28(11):8(in Chinese).
丁庆军,何真.现代混凝土胶凝浆体微结构形成机理研究进展[J].中国材料进展,2009,28(11):8.
17 Gollop R S, Taylor H F W. Microstructural and microanalytical studies of sulfate attack. Ⅰ. Ordinary portland cement paste[J].Cement & Concrete Research,1992,22(6):1027.
18 Kunther W, Lothenbach B, Skibsted J. Influence of the Ca/Si ratio of the C-S-H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure[J].Cement & Concrete Research,2015,69(1):37.
19 Feng X X, Li X J, Wei Q M. Investigation of sulphate attack on C-S-H gel[J].China Concrete and Cement Products,2007(3):1(in Chinese).
封孝信,李秀娟,魏庆敏.硫酸盐对C-S-H凝胶的侵蚀探讨[J].混凝土与水泥制品,2007(3):1.
20Li X J. Study on the mechanism of magnesium sulfate to cement and C-S-H gel[J].Advanced Materials Research,2011,243-249:4687.
21Ding Q J, Wang H, Hu C G, et al. Effect of corrosive solutions on C-S-H microstructure in portland cement paste with fly ash[J].Journal of Wuhan University of Technology(Materials Science),2016,31(5):1002.
22Ding Q J, Zhang G Z, Hu C G. Effect of sulfate attack on C-S-H microstructure in hardened portland cement pastes[C]∥The 14th International Congress on the Chemistry of Cement.Beijing,2015.
23 Li Y, Wang P, Guan Z Z, et al. Micro-mechanical properties of individual phases in cement pastes under brine solution using nanoindentation and scaning electron microscopy[J].Journal of Nano Research,2017,46:31.
24 Jackson M D, Moon J, Gotti E, et al. Material and elastic properties of Al-Tobermorite in ancient roman seawater concrete[J].Journal of the American Ceramic Society,2013,96(8):2598.
25 Jackson M D, Chae S R, Mulcahy S R, et al. Unlocking the secrets of Al-tobermorite in roman seawater concrete[J].American Minera-logist,2013,98(10):1669.
26 Chen D, Yu X T, Yu Y D, et al. Progress of study on sulfate attack on concrete materials[J].Journal of Chongqing Jiaotong University(Natural Science),2016,35(2):24(in Chinese).
陈达,俞小彤,廖迎娣,等.混凝土硫酸盐侵蚀研究进展[J].重庆交通大学学报:自然科学版,2016,35(2):24.
27 Yang N R, Zhong B Q, Dong P, et al. Ettringite formation and conditions for its stability[J].Journal of the Chinese Ceramic Society,1984(2):27(in Chinese).
杨南如,钟白茜,董攀,等.钙矾石的形成和稳定条件[J].硅酸盐学报,1984(2):27.
28 Xi Y Z. Recent progress in cement chemistry-notes on the 9th international congress on the chemistry of cement[J].Journal of the Chinese Ceramic Society,1993(6):577(in Chinese).
席耀忠.近年来水泥化学的新进展:记第九届国际水泥化学会议[J].硅酸盐学报,1993(6):577.
29 Álvarez-Ayuso E, Nugteren H W. Synthesis of ettringite: A way to deal with the acid wastewaters of aluminium anodising industry[J].Water Research,2005,39(1):65.
30Kishar E A. Hydration reaction of tricalciumaluminate in different systems[J].Cement & Concrete Research,2005,35(8):1638.
31Hu C G, Ding Q J, Hu S G, et al. Effect of sulfate ions on distribution of Al3+ coordination in hardened cement pastes at variable temperature[J].Journal of Function Materials,2014,45(2):2142(in Chinese).
胡晨光,丁庆军,胡曙光,等.变温下硫酸根离子对水泥浆体中Al3+配位分布的影响[J].功能材料,2014,45(2):2142.
32Ding Q J, Liu K, Zhang G Z, et al. The composition and Al-bearing phases transition of cement paste subjected to MgSO4 attack[J].Journal of Wuhan University of Technology,2016,38(5):1(in Chinese).
丁庆军,刘凯,张高展,等.MgSO4侵蚀条件下水泥浆体相组成及Al相转变[J].武汉理工大学学报,2016,38(5):1.
33 Yu C. Dedradation process and mechanism of cementitious materials subject to sulfate attack[D].Nanjing:Southeast University,2013(in Chinese).
于诚.水泥基材料在硫酸盐侵蚀作用下的劣化过程和机理[D].南京:东南大学,2013.
34 Tian B, Cohen M D. Does gypsum formation during sulfate attack on concrete lead to expansion?[J].Cement & Concrete Research,2000,30(1):117.
35 Xi Y Z. Secondary ettringite formation and durability of expansive concrete[J].China Concerete and Cement Products,2003(2):5(in Chinese).
席耀忠.二次钙矾石形成和膨胀混凝土的耐久性[J].混凝土与水泥制品,2003(2):5.
36 黄士元,蒋家奋,杨南如,等.近代混凝土技术[M].西安:陕西科技出版社,1998.
37 Janković K, Milicić L, Stanković S J, et al. Investigation of the mortar and concrete resistance in aggressive solutions[J].Tehniki Vjesnik,2014,21(1):173.
38 Ma B G, He X Y, Su Y, et al. Investigation of sulfate deterioration of concrete in the environment of inland salt lake[J].Concrete,2001(4):11(in Chinese).
马保国,贺行洋,苏英,等.内盐湖环境中混凝土硫酸盐侵蚀破坏研究[J].混凝土,2001(4):11.
39 Hansen W. A discussion of the paper “scanning electron micrographic studies of ettringite formation” by PK Mehta[J].Cement & Concrete Research,1976,6(4):595.
40Evju C, Hansen S. The kinetics of ettringite formation and dilatation in a blended cement with β-hemihydrate and anhydrite as calcium sulfate[J].Cement & Concrete Research,2005,35(12):2310.
41Mehta P K. Mechanism of expansion associated with ettringite formation[J].Cement & Concrete Research,1973,3(1):1.
42Mehta P K. Scanning electron micrographic studies of ettringite formation[J].Cement & Concrete Research,1976,6(2):169.
43 Scherer G W. Crystallization in pores[J].Cement & Concrete Research,1999,29(8):1347.
44 Scherer G W. Stress from crystallization of salt[J].Cement & Concrete Research,2004,34(9):1613.
45 Chen J K, Jiang M Q. Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion[J].Construction & Building Materials,2009,23(2):812.
46 Chen S S, Mehta P K. Zeta potential and surface area measurements on ettringite[J].Cement & Concrete Research,1982,12(2):257.
47 Mehta P K, Faichung H U. Further evidence for expansion of ettringite by water adsorption[J].Journal of the American Ceramic Society,1978,61(3-4):179.
48 Mehta P K, Klein A. Formation of ettringite by hydration of a system containing an anhydrous calcium sulfoaluminate[J].Journal of the American Ceramic Society,1965,48(8):435.
49 Liu K W. Damage process and deterioration mechanism of cement-based subjected to sodium sulfate attack[D].Nangjing:Nanjing Tech University,2014(in Chinese).
刘开伟.硫酸钠侵蚀下水泥基材料的劣化过程及机理[D].南京:南京工业大学,2014.
50Hansen W. Attack on Portland cement concrete by alkali soils and waters-a Critical review. Symposium on effects of aggressive fluids on concrete[C]∥Highway Research Record.Transportation Research Board.Washington,1966:1.
51Bonen D, Sarkar S L. Replacement of portlandite by gypsum in the interfacial zone and cracking related to crystallisation pressure[J].Ceramic Transactions,1993,37:49.
52Biczok I. Concret corrosion and concrete protection[M].New York:Chemical Publishing Company,1967.
53 Turchin V, Yudina L, Sattarova A. Research sulfate resistance of cement containing composition[J].Procedia Engineering,2013,57:1166.
54 Ismail I, Bernal S A, Provis J L, et al. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure[J].Materials and Structures,2013,46(3):361.
55 Bellmann F, Erfurt W, Ludwig H M. Field performance of concrete exposed to sulphate and low pH conditions from natural and indust-rial sources[J].Cement and Concrete Composites,2012,34(1):86.
56 Santhanam M, Cohen M D, Olek J. Sulfate attack research—whit-her now?[J].Cement and Concrete Research,2001,31(6):845.
57 Schmidt T, Lothenbach B, Romer M, et al. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements[J].Cement and Concrete Research,2009,39(12):1111.
58 Bellmann F, Möser B, Stark J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen[J].Cement & Concrete Research,2006,36(2):358.
59 Xiao J, Deng D H, Zhang W E, et al. Formation of gypsum leading to the destruction of cement paste under the external sulfate attacking[J].Journal of Building Materials,2006,9(1):19(in Chinese).
肖佳,邓德华,张文恩,等.硫酸盐侵蚀下石膏形成引起的水泥净浆破坏[J].建筑材料学报,2006,9(1):19.
60Crammond N J. Thausamine in failed cement mortars and renders from exposed brickwork[J].Cement & Concrete Research,1985,15(6):1039.
61Hartshorn S A, Sharp J H, Swamy R N. Thaumasite formation in Portland-limestone cement pastes[J].Cement & Concrete Research,1999,29(8):1331.
62Sahu S, Badger S, Thaulow N. Evidence of thaumasite formation in Southern California concrete[J].Cement & Concrete Composites,2002,24(3-4):379.
63 Crammond N J. The thaumasite form of sulfate attack in the UK[J].Cement & Concrete Composites,2003,25(8):809.
64 Bensted J. Thaumasite—direct, woodfordite and other possible formation routes[J].Cement & Concrete Composites,2003,25(8):873.
65 Gaze M E, Crammond N J. The formation of thaumasite in a cement∶lime∶sand mortar exposed to cold magnesium and potassium sulfate solutions[J].Cement & Concrete Composites,2000,22(3):209.
66 Hobbs D W, Taylor M G. Nature of the thaumasite sulfate attack mechanism in field concrete[J].Cement & Concrete Research,2000,30(4):529.
67 Abubaker F, Lynsdale C, Cripps J C. Investigation of concrete-clay interaction with regards to the thaumasite form of sulfate attack[J].Construction and Building Materials,2014,67:88.
68 Collepardi M. Thaumasite formation and deterioration in historic buildings[J].Cement & Concrete Composites,1999,21(2):147.
69 Hees R V, Wijffels T J, Klugt L V D. Thaumasite swelling in historic mortars: Field observations and laboratory research[J].Cement & Concrete Composites,2003,25(8):1165.
70Deloye F, Louarn N, Loos F. Examples of masonry analysis: The case of the Puberg Tunnel[J].Bull de Liaison Lab des Ponts et Chaussees,1989,163(1):17.
71Sahu S, Badger S, Thaulow N. Mechanism of thaumasite formation in concrete slabs on grade in Southern California[J].Cement & Concrete Composites,2003,25(8):889.
72Crammond N.The occurrence of thaumasite in modern construction—A review[J].Cement & Concrete Composites,2002,24(3-4):393.
73 Sylla H M. Reactions in hardened cement paste under heat treatment[J].Beton,1988,38:449.
74 Sibbick R G, Crammond N J. Microscopical investigations into recent field examples of the thaumasite form of sulfate attack(TSA)[C]∥Proceedings of the 8th Euroseminar on Microscopy Applied to Buil-ding Materials.Athens,2001:261.
75 Diamond S. Thaumasite in Orange County, Southern California: An inquiry into the effect of low temperature[J].Cement & Concrete Composites,2003,25(8):1161.
76 He Z, Wang L,Shao Y X, et al. Effect of decalcification on C-S-H gel microstructure in cement paste[J].Journal of Building Materials,2011,14(3):293(in Chinese).
何真,王磊,邵一心,等.脱钙对水泥浆体中C-S-H凝胶结构的影响[J].建筑材料学报,2011,14(3):293.
77 He Y, Lu L, Struble L J, et al. Effect of calcium-silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature[J].Materials & Structures,2014,47(1-2):311.
78 Richardson I G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol[J].Cement & Concrete Research,2004,34(9):1733.
79 Sun G K, Young J F, Kirkpatrick R J. The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples[J].Cement & Concrete Research,2006,36(1):18.
80Bonen D. Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement-based materials[J].Journal of the American Ceramic Society,2005,75(10):2904.
81Weerdt K D, Justnes H. The effect of sea water on the phase assemblage of hydrated cement paste[J].Cement & Concrete Composites,2015,55:215.
[1] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[2] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[3] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[4] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[5] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[6] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
[7] 曹园章, 郭丽萍, 臧文洁, 张健, 薛晓丽. 氯盐和硫酸盐交互作用下水泥基材料的破坏机理综述[J]. 材料导报, 2018, 32(23): 4142-4149.
[8] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021.
[9] 张鹏, 冯竟竟, 陈伟, 刘虎, 杨进波. 混凝土损伤自修复技术的研究与进展[J]. 材料导报, 2018, 32(19): 3375-3386.
[10] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[11] 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*[J]. CLDB, 2017, 31(5): 139-144.
[12] 杜丰音, 金祖权, 于泳. 超高强水泥基材料的力学及耐久性能*[J]. CLDB, 2017, 31(23): 44-51.
[13] 左俊卿,周虹,姚武,吴德龙,刘小艳,张玉梅. CNT-CF水泥基材料传感特性研究*[J]. 材料导报编辑部, 2017, 31(22): 125-129.
[14] 潘锐之, 张树鹏, 郑大鹏, 崔宏志, 李东旭. 多维度纳米增强水泥基复合材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 97-103.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed