Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1129-1138    https://doi.org/10.11896/j.issn.1005-023X.2018.07.013
  材料综述 |
实现Ti(C,N)基金属陶瓷强韧化的技术路径
肖水清1,2, 刘杰1,3, 肖白军1, 邓欣1, 伍尚华1
1 广东工业大学机电工程学院,广州 510006;
2 岭南师范学院商学院,湛江 524048;
3 广州番禺职业技术学院机电工程学院,广州 511483
Towards High-strength and High-toughness Ti(C,N)-based Cermets: a Technological Review
XIAO Shuiqing1,2, LIU Jie1,3, XIAO Baijun1, DENG Xin1, WU Shanghua1
1 School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou 510006;
2 Business College, Lingnan Normal University, Zhanjiang 524048;
3 School of Electro-mechanical Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483
下载:  全 文 ( PDF ) ( 1620KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ti(C,N)基金属陶瓷因具有高强度、高硬度、耐高温、耐酸碱、耐磨损等优良性能而被广泛应用于刀具、模具等。在高温切削加工时,金属陶瓷刀具不但具有优良的抗粘附性和热稳定性,还拥有比硬质合金刀具更好的高温红硬性、耐磨性和抗氧化性,并且具有自润滑性能。在日本,金属陶瓷刀具的应用占全部刀具的35%以上,欧美等国也达到20%以上,而在我国,金属陶瓷刀具和陶瓷刀具主要依靠进口,金属陶瓷刀具的使用量仅占刀具总量的3%。由此可见,我国金属陶瓷刀具的研发与生产应用远远落后于发达国家。为实现把我国建设成为全球制造业强国的梦想,必须加快我国金属陶瓷刀具研发、生产与推广应用,以改善加工业的加工精度和产品表面光洁度,提高加工业的加工效率,保证制造业零部件的高质量,全面提高我国制造业水平。
虽然Ti(C,N)基金属陶瓷刀具比传统的硬质合金刀具有更好的高温红硬性、耐磨性和抗氧化性,但是冲击韧性、断裂强度较差及高温强度不够是其致命的缺点。为此,国内外学者在Ti(C,N)基金属陶瓷的强韧性方面展开大量的研究工作,并取得了一定的研究成果。研究工作主要集中在:(1)陶瓷相与金属相的成分;(2)烧结工艺;(3)引入纳米增强体。近两年来,由于钼、钴的资源短缺与价格上涨,从实际生产成本和高性能等方面考虑,一些学者还对无钼无钴、掺高熵合金Ti(C,N)基金属陶瓷的性能进行了研究。
本文采用比较法,对有关Ti(C,N)基金属陶瓷材料强韧化的研究成果进行了分类、归纳与总结,从而得出了影响Ti(C,N)基金属陶瓷材料强韧化的三个因素——组成成分、显微结构和烧结工艺,并就此展开讨论;介绍了当前增强增韧Ti(C,N)基金属陶瓷的三种主要方法——纳米颗粒改性增韧法、晶须增韧法和纤维增韧法;最后提出关于今后Ti(C,N)基金属陶瓷材料的强韧化研究亟待解决的问题与发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖水清
刘杰
肖白军
邓欣
伍尚华
关键词:  Ti(C,N)基金属陶瓷  强韧化  显微结构  金属陶瓷    
Abstract: Ti(C,N) based cermets have been used widely in cutting tools and molds due to their excellent properties of high strength, high hardness, high temperature oxidation resistance, acid and alkali resistance, and abrasion resistance. During high temperature machining, cermet tools shows significantly high sticking resistance, thermal stability, and self-lubricating. Their red hardness, wear resistance, and oxidation resistance are better than cemented carbide ones. The usage of cermet cutting tools over that of the total cutting tools is more than 35% in Japan and more than 20% in both Europe and US, while in China, the number drops to 3%, indicating that the research, development, as well as the manufacture of cermet tools in China are far behind those in advanced countries. Therefore, it becomes extremely urgent and important to speed up the research, development, manufacture, and application of cermet cutting tools in China for the purpose of the development of the global manufacturing powerhouse for China, improving the precision and surface smoothness during high speed machining, increasing the machining efficiency of processing industry, gua-ranteeing the machining quality, and elevating the level of manufacture industry of cutting tools in China.
The fatal drawbacks of Ti(C,N) based cermet include low impact resistance, low fracture toughness, as well as insufficient high temperature strength in spite of the superior red hardness, wear resistance, and oxidation resistance compared with cemented carbide tools. Therefore, significant research has been made on the strengthening and toughening of Ti(C,N) based cermet globally with some good results. The related research is focused on: Ⅰ. the composition of the ceramic and metal phases, Ⅱ. sintering processes, and Ⅲ. the adoption of nano-enhancement. In recent two years, due to the shortage and high price of Mo and Co, some research has been done on Mo and Co free Ti(C,N) based high-entropy alloys for the sake of low cost and high performance.
In this paper, the global research on strengthening and toughening of Ti(C,N) based cermets has been classified, summarized, and generalized. It is found that, based on the current research results, the composition, microstructure and sintering process are the most important factors influencing the strength and toughness of Ti(C,N) based cermets. Three methods for strengthening and toughening of Ti(C,N) based cermets are summarized, including nano-particle toughening, whisker toughening, and fiber toughening. Finally, the urgent unresolved problems are summarized and the development direction is proposed for the strengthening and toughening of Ti(C,N) based cermets.
Key words:  Ti(C    N)-based cermets    strengthening and toughening    microstructure    cermets
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG148  
基金资助: 广东省重大人才工程(扬帆计划)(411282606110);广东省重大科技专项(2016B080915002);湛江市科技计划项目(2016A02021)
通讯作者:  伍尚华:通信作者,男,1963年生,博士研究生导师,主要从事高技术陶瓷、材料加工、陶瓷高温涂层等工艺领域的研究E-mail:swu@gdut.edu.cn   
作者简介:  肖水清:男,1974年生,博士研究生,讲师,主要研究方向为先进陶瓷与金属陶瓷材料的烧结理论和模拟仿真研究 E-mail:xn178@126.com
引用本文:    
肖水清, 刘杰, 肖白军, 邓欣, 伍尚华. 实现Ti(C,N)基金属陶瓷强韧化的技术路径[J]. 《材料导报》期刊社, 2018, 32(7): 1129-1138.
XIAO Shuiqing, LIU Jie, XIAO Baijun, DENG Xin, WU Shanghua. Towards High-strength and High-toughness Ti(C,N)-based Cermets: a Technological Review. Materials Reports, 2018, 32(7): 1129-1138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.013  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1129
1 刘宁,等.Ti(C,N)基金属陶瓷材料[M].合肥:合肥工业大学出版社,2009:9.
2 Sun W C, She X L, Zhang L, et al. Research progress of strengthening and toughening of Ti(C,N)-based cermets[J].Hot Working Technology,2014,43(18):17(in Chinese).
孙万昌,佘晓林,张磊,等.Ti(C,N)基金属陶瓷材料的的强韧化研究进展[J].热加工工艺,2014,43(18):17.
3 Xiao S Q, Wu S H. Research progress on microstructure and properties of Ti(C,N)-based cermets[J].Cemented Carbide,2014,31(2):112(in Chinese).
肖水清,伍尚华.Ti(C,N)基金属陶瓷材料显微结构与性能研究进展[J].硬质合金,2014,31(2):112.
4 Xiong W H, Hu Z H, Cui K. Interface behavior of carbide in Ti(C,N)-based cermet[J].Materials Review,1998,12(2):14(in Chinese).
熊惟皓,胡镇华,崔崑.Ti(C,N)基金属陶瓷中的碳化物的界面行为[J].材料导报,1998,12(2):14.
5 Yang J K, Lee H C. Microstructural evolution during the sintering of a Ti(C,N)-Mo2C-Ni alloy[J].Materials Science and Engineering A,1996,209:213.
6 Wang H T, Xiong W H. Influence of molybdenum content on the structure and characteristic of rim phase of Ti(C,N)-based cermets[J].Cemented Carbide,2006,12(4):203(in Chinese).
王洪涛,熊惟皓.Mo对Ti(C,N)基金属陶瓷包覆相结构与性能的影响[J].硬质合金,2006,12(4):203.
7 He L, Huang C Z, Huang Q, et al. Effect of the content of Mo2C on the mechanical properties and microstructure of Ti(C,N)-based cermet[J].Journal of Materials Science & Engineering,2003,21(2):238(in Chinese).
何林,黄传真,黄勤,等.Mo2C含量对Ti(C,N)基陶瓷力学性能和显微结构的影响[J].材料科学与工程学报,2003,21(2):238.
8 Zhang X B, Liu N. The influence of Mo content on the microstructure and properties of Ti(C,N)-based cermets[J].Cemented Carbide,2006,23(3):160(in Chinese).
章晓波,刘宁.Mo含量对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2006,23(3):160.
9 Yang Q Q, Xiong W H, Zhang M, et al. Microstructure and mecha-nical properties of Mo-free Ti(C,N)-based cermets with Ni-xCr binders[J].Journal of Alloys and Compounds,2015,636:270.
10Yan Y L, Zheng Y, Cheng X, et al. Effect of Molybdenum on microstructure and properties of Ti(C,N)-based cermets[J].Powder Metallurgy Industry,2008,18(1):28(in Chinese).
严永林,郑勇,承新,等.Mo含量对Ti(C,N)基金属陶瓷组织和性能的影响[J].粉末冶金工业,2008,18(1):28.
11Wang S Y. The effect of Mo on the microstructure and mechanical properties of Ti(C,N)-based cermets[J].Journal of Huangshi Institute of Technology,2009,25(2):1(in Chinese).
王赛玉.Mo对Ti(C,N)基金属陶瓷组织性能的影响[J].黄石理工学院学报,2009,25(2):1.
12Wu Y M, Yi L J, Wang X L, et al. Effect of WC content on the microstructure of Ti(C,N)-based Cermets[J].Iron Steel Vanadium Titanium,2016,37(6):56(in Chinese).
吴悦梅,易磊隽,王新玲,等.WC含量对Ti(C,N)基金属陶瓷组织的影响[J].钢铁钒钛,2016,37(6):56.
13 Wu Y M, Yi B, Wang X L, et al. Effect of WC powder size on the microstructure and properties of Ti(C,N)-based Cermets[J].Iron Steel Vanadium Titanium,2017,38(3):57(in Chinese).
吴悦梅,李斌,王新玲,等.WC粉末粒度对Ti(C,N)基金属陶瓷组织和性能的影响[J].钢铁钒钛,2017,38(3):57.
14 Li J G, Liu N. Effect of WC content on the microstructure and pro-perties of Ti(C,N)-based cermets[J].Advanced Ceramics,2006,27(4):3(in Chinese).
李吉刚,刘宁.WC含量对Ti(C,N)基金属陶瓷组织和性能的影响研究[J].现代技术陶瓷,2006,27(4):3.
15 Jin Z B, Liu N, Zhan B, et al. Influence of WC content on microstructure and mechanical properties of ultrafine Ti(C,N)-based cermets[J].Cemented Carbide, 2010,27(5):269(in Chinese).
金之铂,刘宁,詹斌,等.WC含量对超细Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2010,27(5):269.
16 Xiong Ji, Guo Zhixing, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet[J].Materials and Design,2007,28:1689.
17 Dong Guangbiao, Xiong Ji, Chen Jianzhong, et al. Effect of WC on the microstructure and mechanical properties of nano Ti(C,N)-based cermets[J].International Journal of Refractory Metals and Hard Materials,2012,35:159.
18 Qu J, Xiong W H, Yan Z H, et al. Effects of WC particle sizes on microstructure and mechanical properties of Ti(C,N)-based cermets[J].Cemented Carbide,2010,27(6):321(in Chinese).
瞿峻,熊惟皓,姚振华,等.WC粒径对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2010,27(6):321.
19 Wu Y M, Zhou L M, Xiong J, et al. Effect of WC and Mo2C addition on microhardness of Ti(C,N)-based cermets at high temperature[J].Materials for Mechanical Engineering,2017,41(7):24(in Chinese).
吴悦梅,周黎明,熊计,等.WC和Mo2C的添加对Ti(C,N)基金属陶瓷高温显微硬度的影响[J].机械工程材料,2017,41(7):24.
20He L, Huang C Z, Sun J, et al. Effect of the content of Cr3C2 on the mechanical properties of Ti(C,N)-based cermets[J].Journal of Materials Engineering,2003(7):7(in Chinese).
何林,黄传真,孙静,等.Cr3C2含量对Ti(C,N)基金属陶瓷力学性能的影响[J].材料工程,2003(7):7.
21Zhao Y L, Zhao N W, Liu L Y, et al. Effect of the content of Cr3C2 on Ti(C,N)-based cermets[J].Cemented Carbide,2008,25(1):1(in Chinese).
赵永乐,赵能伟,刘林艳,等.Cr3C2对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金,2008,25(1):1.
22Ulf Rolander, Gerold Weinl, Marcus Zwinkels, et al. Effect of Ta on structure and mechanical properties of (Ti,Ta,W)(C,N) Co cermets[J].International Journal of Refractory Metals & Materials,2001,19:325.
23 Chen X, Xiong W H, Qu J, et al. Microstructure and mechanical properties of (Ti,W,Ta)C-xMo-Ni cermets[J].International Journal of Refractory Metals and Hard Materials,2012,31:56.
24 Naidoo M, Johnson O, Sigalas I, et al. Influence of tantalum on the microstructure and properties of Ti(C,N)-Ni cermets[J].International Journal of Refractory Metals and Hard Materials,2014,42:97.
25 Rafiaei S M, Kim J H, Kang S. Effect of nitrogen and secondary carbide on the microstructure and properties of (Ti0.93W0.07)C-Ni cermets[J].International Journal of Refractory Metals and Hard Materials,2014,44:123.
26 Dai H X, Xiong W H, Zhang G P, et al. Effect of TaC contents on thermal shock resistance of Ti(C,N)-based cermets[J].Materials for Mechanical Engineering,2012,36(12):10(in Chinese).
戴鸿霞,熊惟皓,张国鹏,等.TaC含量对Ti(C,N)基金属陶瓷抗热震性能的影响[J].机械工程材料,2012,36(12):10.
27 Chen M, Xiao X, Zhang X F. Effect of TaC content on microstructure and properties of TiCN-based cermets[J].Materials Science and Engineering of Powder Metallurgy,2016,21(2):270(in Chinese).
陈敏,肖玄,张雪峰.TaC含量对Ti(C,N)基金属陶瓷组织与性能的影响[J].粉末冶金材料科学与工程,2016,21(2):270.
28 Xiong J, Guo Z, Shen B, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine Ti C0.7N0.3 cermets[J].Materials & Design,2007,28:1689.
29 Xu L Q, Huang C Z, Wang S L, et al. Effect of content of VC on mechanical properties of Ti(C,N)-based cermets[J].Materials for Mechanical Engineering, 2007,31(11):44(in Chinese).
徐立强,黄传真,王随莲,等.VC含量对Ti(C,N)基金属陶瓷力学性能的影响[J].机械工程材料,2007,31(11):44.
30Zhan B, Liu N. Effect of VC microstructure and properties of Ti(C,N)-based cermet modified by nano-TiN addition[J].Cemented Carbide, 2010,27(4):214(in Chinese).
詹斌,刘宁.VC对纳米TiN改性Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2010,27(4):214.
31Li G X, Hu W W, Liu N, et al. Effect of VC on microstructure and property of nano Ti(C,N)-based cermet[J].Heat Treatment,2011,26(3):48(in Chinese).
李冠晓,胡巍巍,刘宁,等.VC对纳米Ti(C,N)基金属陶瓷组织和性能的影响[J].热处理,2011,26(3):48.
32Zhan B, Liu N, Jin Z B, et al. Effect of VC/Cr3C2 on the microstructure and mechanical properties of Ti (C,N)-based cermets[J].Transactions of Nonferrous Metals Society China,2012(28):1096.
33 Qi F, Kang S.A study On microstructural changes in Ti(C,N)-NbC-Ni cermets[J].Materials Science and Engineering A,1998,251:276.
34 Sun Yong, Alan, Seong-Won Kim, et al. Microstructural of Ti(C,N)-WC-NbC-Ni cermets[J].American Society,2001,84(4):843.
35 Wang J, Liu Y, Feng Y,et al.Effect of NbC On the microstructure and sinterability of Ti(C0.7,N0.3)-based cetrmets[J].Int Journal of Refractory Metals & Hard Materials,2009,27:549.
36 Tan J H, Zhou S Z, Zhu L, et al. Effect of the content of NbC on the microstructure and mechanical properties of Ti(C,N)-based cermets[J].Cemented Carbide,2010,27,2:78(in Chinese).
谭锦颢,周书助,朱磊,等.NbC含量对Ti(C,N)基金属陶瓷组织和力学性能的影响[J].硬质合金,2010,27(2):78.
37 Liu N, Huang X M, et al. Effect of rare earth metal Er on the microstructure and mechanical properties of Ti(C,N)-based cermets[J].Journal of the Chinese Ceramic Society,2000,28(1):72(in Chinese).
刘宁,黄新民,等.Er对Ti(C,N)基金属陶瓷结构和力学性能的影响[J].硅酸盐学报,2000,28(1):72.
38 Li P, Hu Y B, Xiong W H, et al. Effect of Re element Y on properties of Ti(C,N)-based cermet[J].Cemented Carbide,2000,7(2):65(in Chinese).
李鹏,胡耀波,熊惟皓,等.稀土元素Y对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金,2000,7(2):65.
39 Sun W C, Zhang P, Li P, et al. Phase evolution,microstructure and properties of Y2O3-doped TiCN-based cermets[J].Journal of Rare Earths,2015,33(8):867.
40Yu L X, Xiong W H, Feng P, et al. Effects of binder’s composition on microstructure and properties of Ti(C,N)-based cermets[J].Materials Science and Engineering of Powder Metallurgy,2005,10(5):290(in Chinese).
余立新,熊惟皓,丰平,等.粘结相成分对Ti(C,N)基金属陶组织及性能的影响[J].粉末冶金材料科学与工程,2005,10(5):290.
41Zhang H Q, Liu N, Song R Y, et al. Effect of Ni-Co on the properties of ultra-fine grade Ti(C,N)-based cermets[J].Cemented Carbide, 2008,25(4):214(in Chinese).
张红芹,刘宁,宋瑞颖,等.镍钴对超细Ti(C,N)基金属陶瓷性能的影响[J].硬质合金,2008,25(4):214.
42Zhang L W. Study on Al2O3/Ti(C,N) compound sinter materials[J].China Ceramics,2014,50(12):82(in Chinese).
张力伟.Al2O3/Ti(C,N)复相陶瓷刀具材料的研究[J].中国陶瓷,2014,50(12):82.
43 Zhu G, Xie M, Liu Y, et al. Effect of Fe content on the microstructure and mechanical properties of Ti(C,N)-based Cermets[J].Rare Metals and Cemented Carbides,2016,44(2):30(in Chinese).
朱刚,谢明,刘颖,等.Fe添加量对Ti(C,N)基金属陶瓷显微组织及力学性能的影响[J].稀有金属与硬质合金,2016,44(2):30.
44 Zhang Q, Liu B, Chen H. Review of the effect factors on the properties of Ti(C,N)-based cermet cutting tool material [J].Journal of Chongqing University of Arts and Sciences,2014,33(5):5(in Chinese).
张茜,刘兵,陈慧. Ti(C,N)基金属陶瓷刀具材料的性能影响因素[J].重庆文理学院学报,2014,33(5):5.
45 Wonbaek Kim, Chang-Yul Suh, Ki-Min Roh,et al.High-frequency induction heated sintering of high-energy ball milled TiC0.5N0.5 powders and mechanical properties of the sintered products[J].Cermanics International,2013,39:585.
46 Frederic Monteverde, Valentina Medri, Alida Bellosi,et al.Microstructure of hot-pressed Ti(C,N)-based cermets[J].Journal of the European Cermanics Society,2002,22:2587.
47 Li P P, Ye J W, Liu Y, et al. The influence of low pressure sintering temperature on microstructure and properties of Ti(C,N)-based cermets[J].Journal of Functional Materials,2010,41(10):1724(in Chinese).
李平平,叶金文,刘颖,等.低压烧结温度对Ti(C,N)基金属陶瓷显微结构和力学性能的影响[J].功能材料,2010,41(10):1724.
48 Liu W L, Li S F, Li Y B,et al. Study on core-rim microstructure and properties of Ti(C,N)-based cermet[J].Rare Metal Materials and Engineering, 2011,40(s1):578.
刘维良,李少峰,李友宝,等.Ti(C,N)基金属陶瓷的芯-壳显微结构与性能研究[J].稀有金属材料与工程,2011,40(s1):578.
49 Liang Z G, Xiong W H, Lei Y, et al. Fabrication of nano-composite Ti(C,N)-basedcermets by spark plasma sintering[J].Materials for Mechanical Engineering,2006,30(3):64(in Chinese).
梁在国,熊惟皓,雷燕,等.放电等离子烧结纳米复合Ti(C,N)基金属陶瓷[J].机械工程材料,2006,30(3):64.
50Zhang S, Tang S W, Li P N, et al. Microstructure and properties of Ti(C,N)-Co cermet fabricated by spark plasma sintering[J].Journal of Materials Science & Engineering, 2015,33(4):587(in Chinese).
张帅,唐思文,李鹏南,等.放电等离子烧结制备Ti(C,N)-Co金属陶瓷的组织和性能[J].材料科学与工程学报,2015,33(4):587.
51Ostap Zgalat-Lozynskyy, Mathias Herrmann, Andrey Raguly,et al.Spark plasma sintering of TiCN nanopowders in non-linear heating and loading regimes[J].Journal of the European Cermanics Society,2011,31:809.
52Zhang C J, Peng X. Preparation TiCN matrix cermets with microwave sintering[J].Science and Technology of West China,2015,14(11):88(in Chinese).
张翠娟,彭新.微波烧结制备Ti(C,N)基金属陶瓷[J].中国西部科技,2015,14(11):88.
53 Xu Z M, Yi X J, Zhen J S, et al. A study of microstructure and performance of TiC nanopowder reinforced Ti(C,N)-based cermets[J].Journal of Functional Materials,2003,34(6):696(in Chinese).
徐智谋,易新建,郑家燊,等.纳米TiC增强Ti(C,N)基金属陶瓷材料的组织与性能研究[J].功能材料,2003,34(6):696.
54 Xu Z M, Yi X J, Hu M Z, et al. Preparation of nano-Ti(C,N) reinforced Ti(C,N)-based cermets[J].Journal of Inorganic Materials,2003,24(3):41(in Chinese).
徐智谋,易新建,胡茂中,等.纳米Ti(C,N)增强Ti(C,N)基金属陶瓷的制备研究[J].无机材料学报,2003,24(3):41.
55 Li Y. Effect of carbon nanotubes on the microstructure and mechanical properties of Ti(C,N)-based cermets[D].Hefei: Hefei University of Technology,2007(in Chinese).
李勇.添加碳纳米管对Ti(C,N)基金属陶瓷显微组织和力学性能的影响[D].合肥:合肥工业大学,2007.
56 Lu X P, Zheng Y, Wu P. Effect of CNTs addition on microstructure and mechanical properties of Ti(C,N)-based cermets[J].The Chinese Journal of Nonferrous Metals,2011,21(1):145(in Chinese).
吕学鹏,郑勇,吴鹏.碳纳米管添加量对Ti(C,N)基金属陶瓷组织和力学性能的影响[J].中国有色金属学报,2011,21(1):145.
57 Zhao Y L. Research on themanufacturing technique of Ti(C,N)-based cermets with high strength[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
赵永乐.高强韧性 Ti(C,N)基金属陶瓷制备技术的研究[D].南京:南京航空航天大学,2010.
58 Qu J, Xiong W H, Ke Y L, et al. Microstructure and mechanical properties of nano-SiC whisker reinforced Ti(C,N)-based cermets[J]. Materials for Mechanical Engineering, 2009,33(12):62(in Chinese).
瞿峻,熊惟皓,柯阳林,等.纳米SiC晶须增强Ti(C,N)基金属陶瓷的显微组织与力学性能[J].机械工程材料,2009,33(12):62.
59 Zhang P, Sun W C, Li P, et al. Influence of modified carbon fibers content on microstructure and mechanical properties of Ti(C,N)-based Cermets[J].Hot Working Technology,2015,44(10):149(in Chinese).
张佩,孙万昌,李攀,等.改性碳纤维含量对Ti(C,N)基金属陶瓷组织结构和力学性能的影响[J].热加工工艺,2015,44(10):149.45 Zhang Q, Liu B, Chen H. Review of the effect factors on the properties of Ti(C,N)- based cermet cutting tool material[J].Journal of Chongqing University of Arts and Sciences,2014,33(5):5(in Chinese).
张茜,刘兵,陈慧.Ti(C,N)基金属陶瓷刀具材料的性能影响因素[J].重庆文理学院学报,2014,33(5):5.
46 刘维良,李少峰,李友宝等.Ti(C,N)基金属陶瓷的芯-壳显微结构与性能研究[J].稀有金属材料与工程.2011,40(增刊1):578.
47 Li P P, Ye J W, Liu Y, et al. The influence of low pressure sintering temperature on microstructure and properties of Ti(C,N)-based cermets[J].Journal of Functional Materials,2010,41(10):1724(in Chinese).
李平平,叶金文,刘颖,等.低压烧结温度对Ti(C,N)基金属陶瓷显微结构和力学性能的影响[J].功能材料,2010,41(10):1724.
48 Liang Z G, Xiong W H, Lei Y, et al. Fabrication of nano-composite Ti(C,N)-based cermets by spark plasma sintering[J].Materials for Mechanical Engineering,2006,30(3):64(in Chinese).
梁在国,熊惟皓,雷燕,等.放电等离子烧结纳米复合Ti(C,N)基金属陶瓷[J].机械工程材料,2006,30(3):64.
49 Zhang S, Tang S W, Li P N, et al. Microstructure and properties of Ti(C,N)-Co cermet fabricated by spark plasma sintering[J].Journal of Materials Science & Engineering,2015,33(4):587(in Chinese).
张帅,唐思文,李鹏南,等.放电等离子烧结制备Ti(C,N)-Co金属陶瓷的组织和性能[J].材料科学与工程学报,2015,33(4):587.
50Zhang C J, Peng X. Preparation TiCN Matrix cermets with microwave sintering[J].Science and Technology of West China,2015,14(11):88(in Chinese).
张翠娟,彭新.微波烧结制备Ti(C,N)基金属陶瓷[J].中国西部科技,2015,14(11):88.
51Wonbaek Kim, Chang-Yul Suh, Ki-Min Roh,et al.High-frequency induction heated sintering of High-energy ball milled TiC0.5N0.5 powders and mechanical properties of the sintered products[J].Cermanics International,2013,39:585.
52Frederic Monteverde, Valentina Medri, Alida Bellosi,et al.Microstructure of hot-pressed Ti(C,N)-based cermets[J].Journal of the European Cermanics Society,2002,22:2587.
53 Ostap Zgalat-Lozynskyy, Mathias Herrmann, Andrey Raguly,et al.Spark plasma sintering of TiCN nanopowders in non-linear heating and loading regimes[J].Journal of the European Cermanics Society,2011,31:809
54 Xu Z M, Yi X J, Zhen J S, et al. A study of microstructure and performance of TiC nanopowder reinforced Ti(C,N)-based cermets[J].Journal of Functional Materials,2003,34(6):696(in Chinese).
徐智谋,易新建,熊惟皓,等.纳米TiC增强Ti(C,N)基金属陶瓷材料的组织与性能研究[J].功能材料,2003,34(6):696.
55 Xu Z M, Yi X J, Hu M Z, et al. Preparation of nano-Ti(C,N) reinforced Ti(C,N)-based cermets[J].Journal of Inorganic Materials,2003,24(3):41(in Chinese).
徐智谋,易新建,胡茂中,等.纳米Ti(C,N)增强Ti(C,N)基金属陶瓷的制备研究[J].无机材料学报,2003,24(3):41.
56 Li Y. Effect of carbon nanotubes on the microstructure and mechanical properties of Ti(C,N)-based cermets[D].Hefei:Hefei University of Technology,2007(in Chinese).
李勇.添加碳纳米管对Ti(C,N)基金属陶瓷显微组织和力学性能的影响[D].安徽:合肥工业大学.2007.
57 Lu X P, Zheng Y, Wu P. Effect of CNTs addition on microstructure and mechanical properties of Ti(C,N)-based cermets[J].The Chinese Journal of Nonferrous Metals,2011,21(1):145(in Chinese).
吕学鹏,郑勇,吴鹏.碳纳米管添加量对Ti(C,N)基金属陶瓷组织和力学性能的影响[J].中国有色金属学报,2011,21(1):145.
58 Zhao Y L. Research on the manufacturing technique of Ti(C,N)-based cermets with high strength[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010(in Chinese).
赵永乐.高强韧性Ti(C,N)基金属陶瓷制备技术的研究[D].南京:南京航空航天大学,2010.
59 Qu J, Xiong W H, Ke Y L, et al. Microstructure and mechanical properties of nano-SiC whisker reinforced Ti(C,N)-based cermets[J].Materials for Mechanical Engineering,2009,33(12):62(in Chinese).
瞿峻,熊惟皓,柯阳林,等.纳米SiC晶须增强Ti(C,N)基金属陶瓷的显微组织与力学性能[J].机械工程材料,2009,33(12):62.
60Zhang P, Sun W C, Li P, et al. Influence of modified carbon fibers content on microstructure and mechanical properties of Ti(C,N)-based Cermets[J].Hot Working Technology,2015,44(10):149(in Chinese).
张佩,孙万昌,李攀,等.改性碳纤维含量对Ti(C,N)基金属陶瓷组织结构和力学性能的影响[J].热加工工艺,2015,44(10):149.
[1] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[2] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[3] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[4] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[5] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[6] 赵鸣, 李天宇, 石钰. 铈镧复合氧化物对ZnVCrO陶瓷显微结构及压敏性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 120-124.
[7] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[8] 朱刚, 陈家林, 贾海龙, 刘颖, 谢明. Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中的粘结相表面富集行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 125-128.
[9] 毛杰, 邓春明, 吴相彬, 邓畅光, 宋进兵, 刘敏. 不同喷涂工艺下NiCoCrAlYTa涂层的显微结构和性能*[J]. 《材料导报》期刊社, 2017, 31(16): 51-54.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed