Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1073-1078    https://doi.org/10.11896/j.issn.1005-023X.2018.07.004
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
锂硫电池隔膜改性研究进展
郭雅芳, 肖剑荣, 侯永宣, 齐孟, 蒋爱华
桂林理工大学理学院,桂林 541004
Latest Research Progress of Modifying the Separators Used for Lithium-Sulfur Batteries
GUO Yafang, XIAO Jianrong, HOU Yongxuan, QI Meng, JIANG Aihua
College of Science, Guilin University of Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 1765KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂硫电池因高比容量和高能量密度引起了研究者们的广泛关注,成为新型锂电池研究热点之一。隔膜作为锂硫电池的重要组成部分,是提高电池各方面性能的关键。现阶段锂硫电池隔膜改性工作主要集中于高性能涂层材料的设计与合成以及新型隔膜材料的开发。本文综述了锂硫电池隔膜改性的研究现状,分别从碳涂层隔膜、元素掺杂碳涂层隔膜、金属氧化物/碳复合涂层隔膜、新型薄膜材料和多层隔膜等五个方面进行介绍,指出了从隔膜入手提高导电性、抑制穿梭效应、减轻锂电极腐蚀,从而提高电池电化学性能的重要性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭雅芳
肖剑荣
侯永宣
齐孟
蒋爱华
关键词:  锂硫电池  硫正极  隔膜    
Abstract: Lithium sulfur battery with its high theoretical specific capacity and specific energy has provoke intensive attention, and becomes one of the research hotspots. As one of the essential ingredients for lithium-sulfur batteries, separator is the crucial factor for the performance promotion. At present, the research of modifying separator mainly focus on the design and synthesis of high performance coating materials as well as the exploitation of new separator materials. The present paper elaborates the latest research progress of modifying separator for lithium-sulfur batteries is introduced from five aspects: carbon coating separator, element-doped carbon coating separator, metal oxide/carbon composite coating separator, new membrane materials and multilayer separator. It also suggests the significance of separator modification for raising conductivity, inhibiting shuttle effect and mitigating corrosion of lit-hium electrode,and moreover, for improving the electrochemical properties of Li-S cells.
Key words:  lithium-sulfur battery    sulfur cathode    separator
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TB321  
基金资助: 国家自然科学基金(11364011);广西自然科学基金(2015GXNSFAA139004)
通讯作者:  肖剑荣:通信作者,男,1967年生,博士,教授,从事锂离子电池材料研究 E-mail:xjr@glut.edu.cn   
作者简介:  郭雅芳:女,1989年生,硕士研究生,从事锂离子电池材料研究 E-mail:873294509@qq.com
引用本文:    
郭雅芳, 肖剑荣, 侯永宣, 齐孟, 蒋爱华. 锂硫电池隔膜改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1073-1078.
GUO Yafang, XIAO Jianrong, HOU Yongxuan, QI Meng, JIANG Aihua. Latest Research Progress of Modifying the Separators Used for Lithium-Sulfur Batteries. Materials Reports, 2018, 32(7): 1073-1078.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.004  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1073
1 Du W C, Yin Y X, Zeng X X, et al. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries[J].ACS Applied Materials & Interfaces,2016,8(6):3584.
2 Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J].Advanced Materials,2015,27(18):2891.
3 Hu J J, Long G K, Liu S, et al. A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery[J].Chemical Communications,2014,50(93):14647.
4 Wang L, Wang Y, Xia Y Y. Towards high performance lithium-ion sulfur battery based on Li2S cathode using dual-phase electrolyte[J].Energy & Environmental Science,2015,8(5):1551.
5 Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J].Journal of the Electrochemical Society,2004,151(151):A1969.
6 Busche M R, Adelhelm P, Sommer H, et al. Systematical electrochemical study on the parasitic shuttle-effect inlithium-sulfur-cells at different temperatures and different rates[J].Journal of Power Sources,2014,259:289.
7 Junghoon K, Dong-Ju L, Hun-Gi J, et al. An advanced lithium-sulfur battery[J].Advanced Functional Materials,2013,23(8):1076.
8 Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7):3018.
9 Barchasz C, Leprêtre J C, Alloin F, et al. New insights into the li-miting parameters of the Li/S rechargeable cell[J].Journal of Power Sources,2012,199(1):322.
10Yan Y, Yin Y X, Xin S, et al. High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte[J].Electrochimca Acta,2013,91(3):58.
11Caas N A, Hirose K, Pascucci B, et al. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy[J].Electrochimca Acta,2013,97(5):42.
12Zhi W S, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batte-ries[J].Nature Communications,2012,4(4):1331.
13 Tang H, Yao S, Jing M, et al. Mg0.6Ni0.4O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium-sulfur batteries[J].Journal of Alloys and Compounds,2015,650:351.
14 Gong Z, Wu Q, Wang F, et al. A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium-sulfur batteries[J].RSC Advances,2016,6(44):37443.
15 Lee J, Hwang T, Lee Y, et al. Coating of sulfur particles with manganese oxide nanowires as a cathode material in lithium-sulfur batteries[J].Materials Letters,2015,158:132.
16 Deng W, Hu A, Chen X, et al. Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries[J].Journal of Power Sources,2016,322:138.
17 Nersisyan H H, Joo S H, Yoo B U, et al. Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery[J].Carbon,2016,103:255.
18 Nitze F, Fossum K, Xiong S, et al. Sulfur-doped ordered mesoporous carbons: A stability-improving sulfur host for lithium-sulfur battery cathodes[J].Journal of Power Sources,2016,317:112.
19 Li H, Sun L, Wang G. Self-assembly of polyethylene glycol-grafted carbon nanotube/sulfur composite with nest-like structure for high performance lithium-sulfur batteries[J].ACS Applied Materials & Interfaces,2016,8(9):6061.
20Wei P, Fan M Q, Chen H C, et al. Enhanced cycle performance of hollow polyaniline sphere/sulfur composite in comparison with pure sulfur for lithium-sulfur batteries[J].Renewable Energy,2016,86:148.
21Fan C Y, Yuan H, Li H, et al. The effective design of polysulfides trapped separator at the molecular level for high-energy-density Li-S batteries[J].ACS Applied Materials & Interfaces,2016,8(25):16108.
22Rehman S, Guo S, Hou Y. Porous carbon spheres: Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery[J].Advanced Mate-rials,2016,28(16):3167.
23 Jin Z, Xie K, Hong X, et al. Capacity fading mechanism in lithium sulfur cells using poly(ethylene glycol)-borate ester as plasticizer for polymer electrolytes[J].Journal of Power Sources,2013,242(22):478.
24 Yang Y, Sun W, Zhang J, et al. High rate and stable cycling of lit-hium-sulfur batteries with carbon fiber cloth interlayer[J].Electrochimca Acta,2016,209:691.
25 Zhang N, Liu M, Chen Y. Effect of pore structure of the coconut shell actived carbon on the performance of Li-S batteries[J]. Mate-rials Review B:Research Papers,2016,30(3):52(in Chinese).
张娜,刘敏,陈永.椰壳活性炭孔结构对Li-S电池性能的影响[J].材料导报:研究篇,2016,30(3):52.
26 Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface[J].Energy & Environmental Science,2014,7(10):3381.
27 Zhang Z, Lai Y, Zhang Z, et al. A functional carbon layer-coated separator for high performance lithium sulfur batteries[J].Solid State Ionics,2015,278:166.
28 Zhou G, Li L, Wang D, et al. A flexible sulfur-graphene-polypropy-lene separator integrated electrode for advanced Li-S batteries[J].Advanced Materials,2014,27(4):641.
29 Liu N, Huang B, Wang W, et al. Modified separator using thin carbon layer obtained from its cathode for advanced lithium sulfur batteries[J].ACS Applied Materials & Interfaces,2016,8(25):16101.
30Zhou Q X, Xiao J P, Wang W D, et al. Progress of the application of carbon nanotubes[J].Chemical Industry and Engineering Progress,2006,25(7):750(in Chinese).
周庆祥,肖军平,汪卫东,等.碳纳米管应用研究进展[J].化工进展,2006,25(7):750.
31Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146(9-10):351.
32Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706.
33 Zhao D, Qian X, Jin L, et al. Separator modified by ketjen black for enhanced electrochemical performance of lithium sulfur batteries[J].RSC Advances,2016,6(17):13680.
34 Wang Q, Wen Z, Yang J, et al. Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries[J].Journal of Power Sources,2016,306:347.
35 Wei H, Ma J, Li B, et al. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer[J].ACS Applied Materials & Interfaces,2014,6(22):20276.
36 Chung S H, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J].Journal of Physical Chemistry Letters,2014,5(11):1978.
37 Chung S, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J].Advanced Functional Materials,2015,24(33):5299.
38 Balach J, Jaumann T, Klose M, et al. Improved cycling stability of lithium-sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent[J].Journal of Power Sources,2016,303:317.
39 Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J].Advanced Materials,2012,24(15):2047.
40Zhou X, Liao Q, Tang J, et al. A high-level N-doped porous carbon nanowire modified separator for long-life lithium-sulfur batteries[J].Journal of Electroanalytical Chemistry,2016,768:55.
41Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J].Journal of Materials Chemistry A,2013,1(22):6602.
42Zhang Z, Wang G, Lai Y, et al. Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries[J].Journal of Power Sources,2015,300:157.
43 Balach J, Singh H K, Gomoll S, et al. Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries[J].ACS Applied Materials & Interfaces,2016,8(23):14586.
44 Li Z, Jiang Q, Ma Z, et al. Oxygen plasma modified separator for lithium sulfur battery[J].RSC Advances,2015,5(97):79473.
45 Wang L. Boron-doped graphene as interlayer for lithium-sulfur batteries[J].Technology & Development of Chemical Industry,2016,45(5):10(in Chinese).
王璐.硼掺杂石墨烯用作锂硫电池夹层材料的研究[J].化工技术与开发,2016,45(5):10.
46 Zhang Y G, Wang C Y, Yan P. Modification on carbon doped with boron as anode materials for lithium ion secondary battery[J].Che-mical Industry and Engineering Progress,2004,23(3):248(in Chinese).
张永刚,王成扬,闫裴.锂离子二次电池用负极炭材料的掺硼改性[J].化工进展,2004,23(3):248.
47 Xu C, Zhou H, Fu C, et al. Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries[J].Electrochimca Acta,2017,232:156.
48 Xie Y, Meng Z, Cai T, et al. Effect of boron-doping on the graphene aerogel used as cathode for the lithium-sulfur battery[J].ACS Applied Materials & Interfaces,2015,7(45):25202.
49 Guo M Q, Huang J Q, Kong X Y, et al. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J].New Carbon Materials,2016,31(3):352.
50Zhang Z, Lai Y, Zhang Z, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J].Electrochimca Acta,2014,129(16):55.
51Song R, Fang R, Wen L, et al. A trilayer separator with dual function for high performance lithium-sulfur batteries[J].Journal of Po-wer Sources,2016,301:179.
52Balach J, Jaumann T, Mühlenhoff S, et al. Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium-sulphur batteries[J].Chemical Communications,2016,52(52):8134.
53 Qian X, Jin L, Zhao D, et al. Ketjen Black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery[J].Electrochimca Acta,2016,192:346.
54 Ma G Q, Wen Z Y, Wang Q S, et al. Effects of CeO2 nano-crystal on electrochemical properties of lithium/sulfur batteries[J].Journal of Inorganic Materials,2015,30(9):913(in Chinese).
马国强,温兆银,王清松,等.CeO2纳米晶的添加对锂硫电池电化学性能的影响[J].无机材料学报,2015,30(9):913.
55 Bing D, Shen L, Xu G, et al. Encapsulating sulfur into mesoporous TiO2, host as a high performance cathode for lithium-sulfur battery[J].Electrochimca Acta,2013,107(10):78.
56 Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: A review[J].International Journal of Hydrogen Energy,2009,34(11):4889.
57 Kim C S, Guerfi A, Hovington P, et al. Facile dry synthesis of sulfur-LiFePO4, core-shell composite for the scalable fabrication of lithium/sulfur batteries[J].Electrochemistry Communications,2013,32(32):35.
58 Wang Y, Zhan H, Hu J, et al. Wet-laid non-woven fabric for separator of lithium-ion battery[J].Journal of Power Sources,2009,189(1):616.59 Wang L, Liu J, Haller S, et al. A scalable hybrid separator for a high performance lithium-sulfur battery[J].Chemical Communications,2015,51(32):6996.
60Zhu J, Yanilmaz M, Fu K, et al. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries[J].Journal of Membrane Science,2016,504:89.
61Zhu J, Ge Y, Kim D, et al. A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries[J].Nano Energy,2015,20:176.
62Jin J, Lin C, Zhang W, et al. Few-layered Ti3C2 nanosheet/glass fiber composite separator as lithium polysulphide reservoir for high-performance lithium-sulfur battery[J].Journal of Materials Chemistry A,2016,4(16):5993.
63 Yeon S H, Ahn W, Shin K H, et al. Carbide-derived carbon/sulfur composite cathode for multi-layer separator assembled Li-S battery[J].Korean Journal of Chemical Engineering,2015,32(5):867.
[1] 葛世伟, 赵倩, 刘玉, 刘耀阳, 韦楚. 层状双羟基氢氧化物及其衍生物在锂硫电池中的应用[J]. 材料导报, 2024, 38(20): 23070107-10.
[2] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[3] 姜宇, 杨蓉, 张乾伟, 樊潮江, 董鑫, 蒋百铃, 燕映霖. 功能化MXene在锂硫电池中应用研究进展[J]. 材料导报, 2024, 38(12): 22100251-9.
[4] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[5] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[6] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[7] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[8] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[9] 吴强, 张薇, 余创, 程时杰, 谢佳. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175-15.
[10] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[11] 魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
[12] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[13] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[14] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[15] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed