Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 278-281    https://doi.org/10.11896/j.issn.1005-023X.2018.02.024
  物理   材料研究 |材料 |
废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用
胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民
华南理工大学材料科学与工程学院,广东省高性能与功能高分子材料重点实验室,广州 510640
Preparation of WPCBP/SiO2 Hybrid Filler and Its Application in Unsaturated Polyester Resin
Dechao HU,Zhixin JIA,Bangchao ZHONG,Huanhuan DONG,Yong DING,Yuanfang LUO,Demin JIA
School of Materials Science and Engineering, Guangdong Key Laboratory of High Performance and FunctionalPolymer Materials, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 2758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为增强废印刷电路板非金属粉(WPCBP)与聚合物基体之间的界面结合作用,采用溶胶-凝胶法在WPCBP表面原位负载了一层纳米二氧化硅粒子(SiO2),制备了一种新型的WPCBP-SiO2杂化填料。SEM、TGA和FTIR证明SiO2通过化学键成功负载到了杂化填料的表面。采用含双键的界面改性剂对杂化填料进行改性后,应用于不饱和聚酯树脂基体,探讨了未改性杂化填料及表面改性杂化填料对不饱和聚酯复合材料的力学性能、界面结合作用和热稳定性能的影响。结果表明,新型的杂化填料WPCBP-SiO2能够与不饱和聚酯基体形成强的界面结合作用,显著提高不饱和聚酯复合材料的力学性能和热稳定性能,且表面改性后复合材料的各项性能得到进一步提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡德超
贾志欣
钟邦超
董焕焕
丁勇
罗远芳
贾德民
关键词:  杂化填料  废印刷电路板非金属粉  不饱和聚酯树脂  力学性能  补强机理  热稳定性    
Abstract: 

To strengthen the interfacial interaction between waste printed circuit boards powders (WPCBP) and polymer matrix, WPCBP was immobilized a layer of SiO2 nanoparticles to form a novel WPCBP-SiO2 hybrid filler by sol-gel method. SEM, TGA and FTIR suggested that SiO2 nanoparticles were chemically bonded onto the surface of WPCBP. Then WPCBP-SiO2 hybrid filler was modified with a silane coupling agent and incorporated in unsaturated polyester resin (UPE) matrix. The effect of WPCBP-SiO2 hybrid filler on mechanical properties, interfacial bonding and thermal stability of UPE composites were comprehensively explored. It has been confirmed that WPCBP-SiO2 hybrid filler could form a strong interfacial interaction with polymer matrix, and markedly enhance the mechanical properties and thermal stability of UPE composites. Besides, the modification of hybrid filler give further improvements of UPE composites.

Key words:  hybrid filler    WPCBP    unsaturated polyester resin    mechanical property    reinforcing mechanism    thermal stability
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TQ327  
基金资助: 广东省应用型科技研发专项资金(2015B020237004)
引用本文:    
胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
Dechao HU,Zhixin JIA,Bangchao ZHONG,Huanhuan DONG,Yong DING,Yuanfang LUO,Demin JIA. Preparation of WPCBP/SiO2 Hybrid Filler and Its Application in Unsaturated Polyester Resin. Materials Reports, 2018, 32(2): 278-281.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.024  或          http://www.mater-rep.com/CN/Y2018/V32/I2/278
图1  WPCBP-SiO2杂化填料的制备示意图
图2  (a—c)WPCBP和(d—f)WPCBP-SiO2杂化填料的扫描电镜图
图3  WPCBP、WPCBP-SiO2和m-WPCBP-SiO2的FTIR曲线
图4  WPCBP和WPCBP-SiO2的TGA和DTG曲线
图5  (a,b)WPCBP, (c,d)WPCBP-SiO2和(e,f) m-WPCBP-SiO2填充的UPE复合材料的扫描电镜图
Sample Tensile strength
MPa
Flexural strength
MPa
Impact strength
kJ/m2
UPE 56.7±1.3 91.4±1.1 5.9±0.13
UPE/WPCBP composites 47.1±1.5 85.7±1.4 4.4±0.37
UPE/WPCBP-SiO2 composites 60.1±1.5 97.1±1.5 7.6±0.59
UPE/m-WPCBP-SiO2 composites 70.3±1.7 111.3±1.5 9.4±0.41
表1  UPE及UPE复合材料的力学性能
图6  UPE复合材料的补强机理示意图
图7  UPE和UPE复合材料的TGA曲线
1 Huang K, Guo J, Xu Z , et al. Recycling of waste printed circuit boards:A review of current technologies and treatment status in China[J]. Journal of Hazardous Materials, 2009,164(2-3):399.
2 Zhou Y, Qiu K . A new technology for recycling materials from waste printed circuit boards[J]. Journal of Hazardous Materials, 2010,175(1-3):823.
3 Zheng Y H, Shen Z G, Cai C J , et al. Polypropylene filled with nonmetals recycled from waste PCBs[J]. Polymer Materials Science and Engineering, 2009,25(9):154(in Chinese).
4 郑艳红, 沈志刚, 蔡楚江 , 等. 废印刷电路板非金属粉填充聚丙烯的实验[J]. 高分子材料科学与工程, 2009,25(9):154.
5 Wang X, Guo Y, Liu J , et al. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders[J]. Journal of Environmental Management, 2010,91(12):2505.
6 Wang F, He H, Chen J Z , et al. Modifying of PE wood-plastic composite with waste printed circuit board nonmetal powder[J]. Polymer Materials Science and Engineering, 2012,28(8):174(in Chinese).
7 王丰, 何慧, 陈继尊 , 等. 废PCB粉增强改性聚乙烯基木塑复合材料[J]. 高分子材料科学与工程, 2012,28(8):174.
8 Zheng Y H, Shen Z G, Cai C J , et al. Mechanical properties of PP matrix composites filled with nonmetals recycled from waste PCB and milled glass fibers[J]. Acta Materiae Compositae Sinica, 2009,26(2):59(in Chinese).
9 郑艳红, 沈志刚, 蔡楚江 , 等. 废印刷电路板非金属粉增强及磨碎玻璃纤维增强聚丙烯力学性能[J]. 复合材料学报, 2009,26(2):59.
10 Hong S G, Su S H . The use of recycled printed circuit boards as reinforcing fillers in the polyester composite[J]. Journal of Environmental Science & Health Part A, 1996,31(6):1345.
11 Xu B F, Lin Z D, Xian J M , et al. Preparation and characterization of polypropylene composites with nonmetallic materials recycled from printed circuit boards[J]. Journal of Thermoplastic Composite Materials, 2016,29(1):48.
12 Li S Y, Sun Y S, Liang H F , et al. Production and characterization of polypropylene composites filled with glass fibre recycled from pyrolysed waste printed circuit boards[J]. Environmental Technology, 2014,35(21):2743.
13 Fan W, Zhang C, Liu T X . Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013,30(1):14(in Chinese).
14 樊玮, 张超, 刘天西 . 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013,30(1):14.
15 Yang W B, Zhang L, Liu J W , et al. Progress in research on preparation and application of graphene composites[J]. Journal of Mate-rials Engineering, 2015,43(3):91(in Chinese).
16 杨文彬, 张丽, 刘菁伟 , 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015,43(3):91.
17 Fan Z J, Yan J, Zhi L J , et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Advanced Materials, 2010,22(33):3723.
18 Zhang C, Huang S, Weng W T , et al. Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites[J]. Journal of Materials Chemistry, 2012,22(6):2427.
19 Lin Y, Liu S Q, Peng J , et al. The filler-rubber interface and reinforcement in styrene butadiene rubber composites with graphene/si-lica hybrids: A quantitative correlation with the constrained region[J]. Composites Part A: Applied Science and Manufacturing, 2016,86:19.
20 Jiang L, Zhang C, Liu M , et al. Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids[J]. Composites Science and Technology, 2014,91(31):98.
21 Lin J, Zhong B C, Jia Z X , et al. In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin[J]. Applied Surface Science, 2017,407(15):130.
22 Xing M F, Zhang F S . Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments[J]. Chemical Engineering Journal, 2013,219(1):131.
23 Liu Y, Deng C L, Zhao J , et al. An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system[J]. Polymer Degradation and Stability, 2011,96(3):363.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed