Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 31-34    https://doi.org/10.11896/j.issn.1005-023X.2017.08.007
  材料研究 |
整体型环氧树脂大孔聚合物的制备与表征*
吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄
宁波大学材料科学与化学工程学院,新型功能材料及其制备科学国家重点实验室培育基地, 宁波 315211
Preparation and Characterization of Monolithic Epoxy-based Macroporous Polymer
WU Yanfei, TAO Kai, BAI Wenjing, CAO Dali, LI Xiaoying, LIANG Yunxiao
State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 1391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 用三亚乙基四胺(TETA)作为固化剂,通过双酚A环氧树脂在聚乙二醇(PEG)介质中的聚合反应诱导相分离制备具有三维骨架结构的整体型环氧树脂大孔聚合物。固定PEG1000与PEG2000的质量比为6∶1,分别研究了环氧树脂与PEG的比例关系和TETA的用量对整体型大孔聚合物孔结构的影响,用FT-IR、SEM、BET和MIP对整体型大孔聚合物进行表征并将其用于重金属离子的吸附。结果表明,改变环氧树脂与PEG的比例关系或者TETA的用量都可以调控大孔聚合物的孔结构,其孔径为0.1~1 μm。孔径最小的整体型大孔聚合物比表面积最大,约84.4 m2/g,但孔径较大的整体型大孔聚合物对重金属离子(Cu2+)的吸附性能更好,吸附量高达113.1 mg/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴燕飞
陶凯
白文静
曹大丽
李笑迎
梁云霄
关键词:  整体型  环氧树脂  大孔聚合物  孔结构  吸附    
Abstract: With TETA as curing agent, 3D skeletal epoxy-based macroporous polymer monoliths were prepared by the polymerization-reaction-induced phase separation of bisphenol A epoxy resins in PEG medium. While the weight ratio of PEG1000 to PEG2000 was fixed at 6/1, the influences of the weight ratio of epoxy to PEG and the amount of TETA on the pore structure of the macroporous polymer monoliths were studied respectively. Macroporous polymer monoliths were characterized by FT-IR, SEM, BET and MIP, and were used to adsorb heavy metal ions. Results show that the pore structure of macroporous polymer can be adjusted by changing the weight ratio of epoxy and PEG or the amount of TETA, and the pore sizes are adjusted in a range of 0.1-1 μm. The monolithic macroporous polymer is minimum with minimum pore size reaches the maximum when the pore size possesses the maximum specific surface area, which is about 84.4 m2/g. On the other side, the macroporous polymer with larger pore size exhibit higher adsorption performance for Cu(Ⅱ) ions, which can reach up to 113.1 mg/g.
Key words:  monolithic    epoxy resin    macroporous polymer    pore structure    adsorption
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  O631.5  
基金资助: 浙江省公益项目(2014C31130);浙江省自然科学基金(LY12B01004);宁波大学王宽诚幸福基金(XKL072)
作者简介:  吴燕飞:女,1989年生,硕士研究生,研究方向为整体型大孔材料 E-mail:1412881918@qq.com; 梁云霄:通讯作者,男,1965年生,博士,教授,研究方向为功能多孔材料 E-mail:liangyunxiao@nbu.edu.cn
引用本文:    
吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄. 整体型环氧树脂大孔聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(8): 31-34.
WU Yanfei, TAO Kai, BAI Wenjing, CAO Dali, LI Xiaoying, LIANG Yunxiao. Preparation and Characterization of Monolithic Epoxy-based Macroporous Polymer. Materials Reports, 2017, 31(8): 31-34.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.007  或          http://www.mater-rep.com/CN/Y2017/V31/I8/31
1 El Kadib A, Chimenton R, Sachse A, et al. Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis[J]. Angew Chem Int Ed,2009,48(27):4969.
2 Fan R, Guo F M, Liu W H, et al. Research progresses of monoli-thic stationary phases used in HPLC prepared by in-situ polymerization and crosslinking[J]. Mater Rev,2014,28(S1):279(in Chinese).
范瑞, 郭丰梅, 刘文华, 等. 原位键合交联高效液相色谱整体柱的研究进展[J]. 材料导报,2014,28(专辑23):279.
3 Peroni D, Vanhoutte D, Vilaplana F, et al. Hydrophobic polymer monoliths as novel phase separators: Application in continuous liquid-liquid extraction systems[J]. Anal Chim Acta,2012,720:63.
4 Nischang I, Brüggemann O. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths[J]. J Chromatogr A,2010,1217(33):5389
5 Sachse A, Galarneau A, Fajula F, et al. Functional silica monoliths with hierarchical uniform porosity as continuous flow catalytic reactors[J]. Microp Mesop Mater,2011,140(1):58.
6 He P, Greenway G, Haswell S J. Development of a monolith based immobilized lipase micro-reactor for biocatalytic reactions in a biphasic mobile system[J]. Process Biochem,2010,45(4):593.
7 Ponomareva E A, Volokitina M V, Vinokhodov D O, et al. Biocatalytic reactors based on ribonuclease A immobilized on macroporous monolithic supports[J]. Anal Bioanal Chem,2013,405(7):2195.
8 Ma J T, Jiang D D, Qi R F, et al. Application of monolithic column in microfluidic chip[J]. J Instrumental Anal,2015,34(3):289(in Chinese).
马玖彤, 江丹丹, 祁瑞芳, 等. 整体柱富集技术在微流控芯片系统中的应用[J]. 分析测试学报,2015,34(3):289.
9 Zhang J, Chen G, Tian M, et al. A novel organic-inorganic hybrid monolithic column prepared in-situ in a microchip and its application for the determination of 2-amino-4-chlorophenol in chlorzoxazone tablets[J]. Talanta,2013,115:801.
10 Walsh Z, Paull B, Macka M. Inorganic monoliths in separation scie-nce: A review[J]. Anal Chim Acta,2012,750:28.
11 Jandera P. Advances in the development of organic polymer monolithic columns and their applications in food analysis-A review[J]. J Chromatogr A,2013,1313(20):37.
12 Sun X, He X, Chen L, et al. In-column “click” preparation of hydrophobic organic monolithic stationary phases for protein separation[J]. Anal Bioanal Chem,2011,399(10):3407.
13 He L, Feng H J, Li J J, et al. Development and application of modification of organic polymer monolithic columns[J]. J Instrumental Anal,2011,30(7):825(in Chinese).
何丽, 冯海建, 李静杰, 等. 有机聚合物整体柱的改性与应用进展[J]. 分析测试学报,2011,30(7):825.
14 Hoegger D, Freitag R. Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography[J]. J Chromatogr A,2001,914:211.
15 Liu M Q, Liu H Y, Liu Y K, et al. Preparation and characterization of temperature-responsive poly(N-isopropylacrylamide-co-N,N′-methylenebisacrylamide) monolith for HPLC[J]. J Chromatogr A,2011,1218(2):286.
16 Sinitsyna E S, Walter J G, Vlakh E G, et al. Macroporous methacrylate-based monoliths as platforms for DNA microarrays[J]. Talanta,2012,93(2):139.
17 Hasegawa G, Kanamori K, Nakanishi K, et al. Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization[J]. Polymer,2011,52(21):4644.
18 Zalusky A S, Olayo-Valles R, Taylor C J, et al. Mesoporous polystyrene monoliths[J]. J Am Chem Soc,2001,123(7):1519.
19 Lee J, Yandek G R, Kyu T. Reaction induced phase separation in mixtures of multifunctional polybutadiene and epoxy[J]. Polymer,2005,46(26):12511.
20 Zhang R F, Zhang L L. Preparation of 3-dimentional skeletal polymer via control of reaction-induced phase separation in epoxy/poly(ethylene glycol) blends[J]. Polym Bull,2008,61(6):671.
21 Chen Y, Li D X. Analysis of error for pore structure of porous materials measured by MIP[J]. Bull Chinese Ceram Soc,2006,25(4):198(in Chinese).
陈悦, 李东旭. 压汞法测定材料孔结构的误差分析[J]. 硅酸盐通报,2006,25(4):198.
22 Zhou H, Xie D X, Song C X, et al. Application of mercury intrusion method in manufacturing the alumina membrane[J]. Exp Technol Manage,2010,27(9):31(in Chinese).
周花, 谢东星, 宋春晓, 等. 压汞法在氧化铝陶瓷膜制备中的应用[J]. 实验技术与管理,2010,27(9):31.
23 Xie Z H, Zhang Y, Wang H L, et al. Influence of organic solvent/ionic liquid mixture system on solubility of cellulose[J]. J Funct Mater,2014(22):22060(in Chinese).
谢志海, 张瑜, 王海力, 等. 铜离子印迹聚合物的制备及吸附性能研究[J]. 功能材料,2014(22):22060.
24 Du Z Y, Yang H F, Qu H H, et al. Preparation of dithizone-anchored PHEMA microspheres and its adsorption properties for Cu2+[J]. Chemistry,2009,72(9):803(in Chinese).
杜志英, 杨慧芬, 瞿欢欢, 等. 双硫腙改性的聚(二甲基丙烯酸乙二醇酯-甲基丙烯酸羟乙酯)微球的制备及其对铜离子的吸附研究[J]. 化学通报,2009,72(9):803.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[4] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[5] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[6] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[7] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[8] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[11] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[12] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[13] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[14] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[15] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed