Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 26-29    https://doi.org/10.11896/j.issn.1005-023X.2017.024.006
  第一届先进胶凝材料研究与应用学术会议 |
弱碱环境下硅灰复合硅酸盐胶凝材料体系硫酸盐侵蚀产物
李 燕,杨旭光,孙道胜,王爱国,刘开伟
安徽建筑大学材料与化学工程学院,合肥 230601
Sulfate Attack Product of Composite Silicate Cementing System with Silica Fume in Weak Alkaline
LI Yan, YANG Xuguang, SUN Daosheng, WANG Aiguo, LIU Kaiwei
College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601
下载:  全 文 ( PDF ) ( 546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了硅灰替代量(质量分数)为0%、5%、10%的复合硅酸盐胶凝体系浸泡在弱碱环境下,10%(质量分数)Na2SO4溶液中侵蚀210 d时的侵蚀产物和含量。利用XRD、SEM、EDS对侵蚀产物进行了表征,通过K值法定量计算了硅灰复合硅酸盐胶凝体系中石膏的含量,通过分光光度法对硅灰复合硅酸盐胶凝体系中自由硫酸根离子以及总硫酸根离子含量进行了测定。结果表明,在弱碱环境下,10%Na2SO4溶液中硅灰复合硅酸盐胶凝体系的主要侵蚀产物是石膏和钙矾石,侵蚀产物的形成引起膨胀开裂,且随硅灰掺量的增加,硅灰复合硅酸盐胶凝体系中的自由硫酸根离子及总硫酸根离子含量和侵蚀产物明显减少,膨胀率也随硅灰掺量的增加而减小,硅灰对复合硅酸盐胶凝体系的膨胀有一定的改善作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李 燕
杨旭光
孙道胜
王爱国
刘开伟
关键词:  弱碱  硫酸钠  硅酸盐水泥  硅灰  侵蚀产物    
Abstract: The composite silicate cementing systems with 0%, 5% and 10% (mass fraction) cement replacement ratio by silica fume were immersed in 10% (mass fraction) sodium sulfate and weak alkaline solution for 210 d, the attack products and contents were studied. The attack products were characterized by XRD, SEM and EDS. The contents of gypsum in composite silicate cementing system with silica fume were calculated by using K value, the contents of free and total sulfate ion in composite silicate cementing system with silica fume were determined by spectrophotometry. The results show that the main attack products of composite silicate cementing system with silica fume are gypsum and ettringite in 10% sodium sulfate and weak alkaline solution, and the formation of attack products causes the specimen to expand and crack. The contents of free and total sulfate ion and the attack product in composite silicate cementing system with silica fume obviously decrease, and the expansion rates decrease with the increase of silica fume. Silica fume has a certain improvement effect on the expansion of composite silicate cementing system with silica fume.
Key words:  weak alkaline    sodium sulfate    Portland cement    silica fume    attack product
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51578004;51778003;51608004);安徽省高校自然科学基金(KJ2016A818)
通讯作者:  孙道胜:男,1963年生,博士,教授,研究方向为水泥基材料 E-mail:sundaosheng@163.com   
作者简介:  李燕:女,1964年生,博士,教授,研究方向为水泥基材料 E-mail:lyc171805@163.com
引用本文:    
李 燕,杨旭光,孙道胜,王爱国,刘开伟. 弱碱环境下硅灰复合硅酸盐胶凝材料体系硫酸盐侵蚀产物[J]. 《材料导报》期刊社, 2017, 31(24): 26-29.
LI Yan, YANG Xuguang, SUN Daosheng, WANG Aiguo, LIU Kaiwei. Sulfate Attack Product of Composite Silicate Cementing System with Silica Fume in Weak Alkaline. Materials Reports, 2017, 31(24): 26-29.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.006  或          http://www.mater-rep.com/CN/Y2017/V31/I24/26
1 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社,1999.
2 Qiao Hongxia, He Zhongmao, Liu Cuilan. Dynamic elastic modulus and microstructure study of concrete in sulfate environment[J]. J Harbin Institute of Technology, 2008,34(4):452(in Chinese).
乔宏霞, 何忠茂, 刘翠兰. 硫酸盐环境混凝土动弹性模量及微观研究[J]. 哈尔滨工业大学学报, 2008,34(4):452.
3 Jin Yannan, Zhou Shuangxi. Types and mechanism of concrete sulfate attack[J]. J East China Jiaotong University, 2006,23(5):4(in Chinese).
金雁南, 周双喜. 混凝土硫酸盐侵蚀的类型及作用机理[J]. 华东交通大学学报, 2006,23(5):4.
4 Tian B, Cohen M D. Does gypsum formation during sulfate attack on concrete lead to expansion?[J]. Cem Concr Res, 2000,30(1):117.
5 Wu Meng, Ji Yongsheng, Zhan Guangmei, et al. Mechanism study on red mud geopolymer to sulfate attack at low temperature[J]. Mater Rev: Res, 2016,30(9):112(in Chinese).
吴萌, 姬永生, 展光美,等. 低温环境下赤泥地聚合物抗硫酸盐侵蚀机理研究[J]. 材料导报:研究篇, 2016,30(9):122.
6 Neville A. The confused world of sulfate attack on concrete[J]. Cem Concr Res, 2004,34(8):1275.
7 Omar S. Baghab ra Al-Amoudi. Attack on plain and blended cements exposed to aggressive sulfate environments[J]. Cem Concr Compos, 2002,24:305.
8 Raphaёl Tixier. Modeling of damage in cement-based materials subjected to external sulphate attackⅡ: Comparision with experiments[J]. J Mater Civil Eng, 2003,15(4):314.
9 Xi Yaozhong. Recent progress in cement chemistry—Notes on the 9th international congress on the chemistry of cement[J]. J Chin Ceram Soc, 1993,21(6):577(in Chinese).
席耀中. 近年来水泥化学新进展——第九届国际水泥化学会议[J]. 硅酸盐学报, 1993,21(6):577.
10Liang Yongning, Yuan Yingshu. The effect of sulfate as an environmental factor on the concrete deterioration: Remarked on the present research[J]. Concrete, 2005(3):27(in Chinese).
梁咏宁, 袁迎曙. 硫酸盐侵蚀环境因素对混凝土性能的影响——研究现状综述[J]. 混凝土,2005(3):27.
11Zhang Shuyuan. Corrosion mechanism of concrete subjected to sulfate salt in complex environment[D]. Qingdao: Qingdao Technological University, 2014(in Chinese).
张淑媛. 复杂环境下混凝土硫酸盐侵蚀机理[D]. 青岛:青岛理工大学, 2014.
12Feng Lingyun. Influence of silica fume and water reducer on resistance to sulfate attack of cement[J]. J Southwest Jiaotong University, 1988,69(3):1(in Chinese).
凤凌云. 硅灰和减水剂对水泥耐硫酸盐腐蚀的影响[J].西南交通大学学报, 1988,69(3):1.
13Xiao Jia, Deng Dehua, Yuan Qiang, et al. Improvement effect of silica fume on the cement paste in sulfate attack[J]. J Southwest Petroleum Institute, 2006,28(3):103(in Chinese).
肖佳,邓德华,元强,等.硅灰对水泥净浆抗硫酸盐侵蚀性能的改善作用[J]. 西南石油学院学报, 2006,28(3):103.
14Li Yuhua. Using K value method with X-ray in quantitative analysis of cement physical phases[J]. Cem Eng, 2001(3):34(in Chinese).
李玉华. 用X射线K值法定量分析水泥物相[J]. 水泥工程, 2001(3):34.
15Yuan Ke, Liao Libing, Wan Hongbo, et al. Quantitative analysis of cristobalite and α-quartz in bentonite by X-ray powder diffraction-comparison between external standard and K-value method[J]. J Chin Ceram Soc, 2011,39(2):377(in Chinese).
袁珂, 廖立兵, 万红波,等. 膨润土中方石英和α-石英的定量相分析-X射线衍射外标法和K值法的对比[J]. 硅酸盐学报, 2011, 39(2):377.
[1] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[2] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[3] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[4] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14): 2348-2353.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed