Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 21-24    https://doi.org/10.11896/j.issn.1005-023X.2017.020.005
  材料研究 |
纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能
吴唯, 陈诗英, 宗孟静子
华东理工大学材料科学与工程学院,中德先进材料联合研究中心,上海 200237
Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites
WU Wei, CHEN Shiying, ZONG Mengjingzi
School of Materials Science and Engineering, East China University of Science and Technology, Sino-German Joint Research Center of Advanced Materials, Shanghai 200237
下载:  全 文 ( PDF ) ( 1414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验制备了纳米Al2O3/聚醚砜-环氧树脂复合材料,考察了不同纳米氧化铝和聚醚砜的用量对复合体系力学和介电性能的影响,并对其热稳定性能进行了研究。结果表明:当添加1 phr纳米氧化铝(Nano-Al2O3)和5 phr聚醚砜(PES)时,三元复合材料EP/5PES/1Al2O3的拉伸强度提高到58 MPa,断裂伸长率达到13%,冲击强度达到16.2 kJ/m2,相比纯环氧树脂分别提高了61.1%、20.3%和8.0%。而且在100 Hz的室温测试条件下,EP/5PES/1Al2O3材料的介电常数和介电损耗分别达到7.6和0.016,较纯环氧树脂均有一定幅度的增加。热重分析(TG)结果表明,EP/5PES/1Al2O3复合材料的初始分解温度为358 ℃,比纯环氧树脂提高了14 ℃,说明热稳定性有较大幅度的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴唯
陈诗英
宗孟静子
关键词:  纳米氧化铝  聚醚砜  环氧树脂  介电性能  热稳定性能    
Abstract: The nano-Al2O3/polyether sulfone-epoxy resin (EP/5PES/1Al2O3) composites were fabricated and the effects of different nano-Al2O3 and PES addition on the mechanical, dielectric and thermal stability properties of composite were also investigated. The results shows that the tensile strength, elongation at break and impact strength of EP/5PES/1Al2O3 composite arrive at 58 MPa, 13% and 16.2 kJ/m2, respectively, which increase by 61.1%, 20.3% and 8.0% compared to the pure epoxy resin. Additio-nally, the EP/5PES/1Al2O3 composite show higher dielectric constant and dielectric loss of 7.6 and 0.016 (100 Hz) compared with the pure epoxy resin. The thermogravimetric analysis (TG) results shows that the thermal stability of EP/5PES/1Al2O3 composites has been improved and its initial decomposition temperature is improved to 358 ℃, which is 14 ℃ higher than that of the pure epoxy resin, indicating a great improvement to thermal stability of composites.
Key words:  nano-Al2O3    polyether sulfone    epoxy resin    dielectric properties    thermal stability
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB332  
作者简介:  吴唯:1958年生,教授,博士研究生导师,主要从事新型功能高分子材料及复合材料研究 Tel:021-64250850 E-mail:wuwei@ecust.edu.cn
引用本文:    
吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites. Materials Reports, 2017, 31(20): 21-24.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.005  或          http://www.mater-rep.com/CN/Y2017/V31/I20/21
1 Cao Y M, Sun J, Yu D H. Preparation and properties of nano-Al2O3, particles/polyester/epoxy resin ternary composites[J]. Appl Polym Sci, 2002,83(1):70.
2 Liu W. Preparation and properties of epoxy composite material of high dielectric constant[D]. Mianyang: Southwest University of Science and Technology, 2014(in Chinese).
刘卫. 高介电常数环氧复合材料的制备及性能研究[D]. 绵阳: 西南科技大学, 2014.
3 Wei H. Research of performance and preparation of graphene/epoxy high dielectric permittivity polymer composites[D]. Changchun: Jilin University, 2014(in Chinese).
魏红. 高介电环氧树脂复合材料的制备及性能研究[D]. 长春: 吉林大学, 2014.
4 Yu J, Huo R, Wu C, et al. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites[J]. Macromol Res, 2012,20(8):816.
5 李冰, 江雄知, 张晓伟. 纳米Al2O3/环氧树脂复合材料的研究进展[C]∥玻璃钢/复合材料学术年会. 广州, 2008:301.
6 Xu D D, Zhu J, Liu Z Y, et al. Thermal stability and insulation strength of nano-Al2O3/epoxy resin composites[J]. China Plastics Ind, 2015(4):87(in Chinese).
徐丹丹, 朱婕, 刘子仪, 等. 纳米Al2O3/环氧树脂复合材料热稳定性及绝缘强度的研究[J]. 塑料工业, 2015(4):87.
7 蒋德意, 赵江涛, 周权, 等. 聚醚砜增韧改性环氧树脂性能研究[C]∥玻璃钢/复合材料学术交流会.武汉,2014:192.
8 Francis B, Thomas S, Thomas S P, et al. Diglycidyl ether of bisphenol-A epoxy resin-polyether sulfone/polyether sulfone ether ketone blends: Phase morphology, fracture toughness and thermo-mechanical properties[J]. Colloid Polym Sci, 2006,285(1):83.
9 Hou Y N. Study on properties of epoxy resin toughed by polyether sulfone[D]. Mianyang: Southwest University of Science and Technology, 2014(in Chinese).9 侯雅楠. 聚醚砜改性环氧树脂的性能研究[D]. 绵阳: 西南科技大学, 2014.
10Chen Y, Yuan G, Xiao Y, et al. Preparation and study on properties of epoxy resin modified by poly(ether sulfone)[C]∥ Strategic Technology (IFOST), 2011 6th International Forum. Harbin, 2011:126.
11Alessi S, Conduruta D, Pitarresi G, et al. Accelerated ageing due to moisture absorption of thermally cured epoxy resin/polyether sulfone blends. Thermal, mechanical and morphological behavior [J]. Polym Degrad Stab, 2011,96(4):642.
12Yu Q Q,Chen G,Chong L,et al. Mechnical properties of high performance epoxy resin toughed by PES[J]. Eng Plastics Appl, 2012,40(9):22(in Chinese).
于倩倩, 陈刚, 崇琳, 等. PES增韧高性能环氧树脂力学性能研究[J]. 工程塑料应用, 2012,40(9):22.
13Chen Y F, Dai Q W, Teng C J, et al. Microstructure and heat-resistance of sce-Al2O3/PES-BMI-BBA-BBE composites[J]. Acta Mater Compos Sin, 2015,32(3):665(in Chinese).
陈宇飞, 代起望, 滕成君, 等. 超临界氧化铝/聚醚砜-BMI-BBA-BBE复合材料的微观结构与耐热性[J]. 复合材料学报, 2015,32(3):665.
14Naganuma Z, Kagawa Z. Effect of particle size on light transmittance of glass particle dispersed epoxy matrix optical composites[J]. Polym Compos, 2001,47(13):4321.
15Neldon J K, Hu Y. The impact of nanocomposite formulations on electrical voltage endurance[C]∥Solid Dielectrics, Proceedings of the 2004 IEEE Internationl Conference. Toulouse, France, 2004:832.
16Bai M Y. Preparation and study on properties of epoxy resin modified by poly(ether-sulfone)/nano-silica[D]. Harbin: Harbin University of Science and Technology(in Chinese).
白孟瑶. 聚醚砜/纳米二氧化硅改性环氧树脂胶黏剂的制备及性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2011.
[1] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[2] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[3] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[4] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[5] 王耿,傅邱云,张芦,施浩,田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[6] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[7] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[8] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[9] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[10] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[11] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[12] 吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄. 整体型环氧树脂大孔聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(8): 31-34.
[13] 姜雪,刘锋,雷子萱,吕游,刘育红,井新利. 热熔预浸工艺及热熔热固性树脂的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 94-100.
[14] 李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
[15] 柳和生, 段翔宇, 赖家美, 黄兴元, 陈乐乐. 超声振荡对多壁碳纳米管/VARTM用环氧树脂复合材料导电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(3): 112-115.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed