Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3760-3767    https://doi.org/10.11896/j.issn.1005-023X.2018.21.012
  金属与金属基复合材料 |
Mg-Gd系合金的合金化研究进展
唐昌平1, 2, 左国良1, 2, 李志云3, 孙玹琪3, 李权4
1 湖南科技大学材料科学与工程学院,湘潭 411201;
2 高温耐磨材料及制备技术湖南省国防科技重点实验室,湘潭 411201;
3 株洲六零八所科技有限公司,株洲 412002;
4 重庆市科学技术研究院,重庆 401123
An Overview on Alloying Research of Mg-Gd Alloys
TANG Changping1, 2, ZUO Guoliang1, 2, LI Zhiyun3, SUN Xuanqi3, LI Quan4
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201;
2 High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province National Defence Science and Technology Laboratory, Xiangtan 411201;
3 Science and Technology Company Limited of No.608 Research Institute, Zhuzhou 412002;
4 Chongqing Academy of Science and Technology, Chongqing 401123
下载:  全 文 ( PDF ) ( 1153KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Mg-Gd系合金具有质量轻、强度高、耐热性能好等优点,在航空航天领域的应用前景广阔。然而,简单的Mg-Gd二元合金通常重稀土含量很高,综合力学性能也不够完善,已不能满足新型镁合金轻质、高强、低成本的设计理念。为了进一步提升该系合金的性能,迄今已开展了大量研究,主要的改良方案包括:(1)恰当的热处理工艺;(2)必要的变形加工技术;(3)合理的成分优化设计。其中,通过合金化方法不断优化成分配比创造出优良的新型合金是改善Mg-Gd系合金性能的根本方法。
鉴于化学成分是影响合金微观组织与力学性能的重要因素,本文综述了合金化元素Ag、Al、Zn、Ca、Si、Mn以及各种稀土元素(RE)对Mg-Gd系合金组织与性能的影响,并展望了其合金化的发展方向。例如,通过添加Zn、Cu、Ni等元素,在保留Mg-Gd系合金中原有纳米级析出相的基础上,还能在组织中形成新的长周期有序堆垛的结构相,从而实现多相协同强化合金的目的。另外,由于稀土元素价格昂贵且不易获得,若能用常见的Al、Mn、Si等非稀土元素代替部分稀土元素,形成新的强化相,则在有效改善合金性能的同时还可降低合金的成本。此外,在合金成分设计上,单一元素的作用效果有限,复合添加才是Mg-Gd系合金化研究的重要发展方向。但需要特别注意的是,在多元化设计过程中某些元素之间因存在相互作用的关系而导致反应失效,例如,含Zr的Mg-Gd系合金一般不添加Al,因为Al不仅能与Zr反应生成Al3Zr相恶化合金组织,而且还会消耗大量基体合金中的稀土元素,降低稀土的利用率。综上所述,在合金化设计过程中,必须解决两大问题:(1)通过合金化元素种类之间的合理搭配,创造出新型合金系列;(2)确定该系列合金中各种元素的最佳含量比,从而使其性能得到进一步优化。
本文分析总结了Mg-Gd系合金在合金化方面的研究进展,分别对LPSO形成元素、非LPSO形成元素、稀土金属元素以及非金属元素对Mg-Gd系合金的作用效果进行了讨论,展示了各种元素在该系合金中的研究现状并展望了其应用前景,以期为今后镁合金的合金化设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐昌平
左国良
李志云
孙玹琪
李权
关键词:  Mg-Gd合金  合金化  微观组织  力学性能    
Abstract: Thanks to the advantages of light weight, high strength and favorable heat resistance, Mg-Gd alloys owns a wide application prospect in the field of aerospace. Nevertheless, simple Mg-Gd binary alloys often bears a high content of heavy rare earth and unsatisfactory comprehensive mechanical properties, which cannot match the novel magnesium alloy design concept of light weight, high strength and low cost. Up to now, great efforts have been put into the research on further improving the properties of the Mg-Gd alloys. The main improving scheme focus on proper heat treatment process, necessary deformation processing technology, and reasonable composition optimization design. Among them, creating a novel alloy with excellent properties by constant optimization of the composition ratio through alloying is the fundamental method for promoting the performance of Mg-Gd alloy.
In view of the fact that the chemical composition is an important factor affecting the microstructure and mechanical properties of the alloy, this paper reviews the effects of alloying elements Ag, Al, Zn, Ca, Si, Mn and diverse rare earth elements (RE) on the microstructure and properties of Mg-Gd alloys, and looks forward to the development direction of alloying. For example, the addition of elements like Zn, Cu, Ni, etc. can contribute to form a new long-cycled ordered stacking structure phase in the structure, while the original nano-precipitated phases in the Mg-Gd-based alloy can still be preserved, thereby achieving the purpose of multi-phase synergistic strengthening of the alloy. Besides, because rare earth elements are expensive and difficult to obtain, if common elements like Al, Mn, and Si can be used as alternatives for rare earth elements to form a new strengthening phase, the alloy performance will be effectively improved and the cost will be reduced. In addition, the effect of single element on the composition of the alloy composition is limited, and compound addition is an important development direction for Mg-Gd alloying study. Whereas special attention should be paid to the fact that interactions between certain elements in the diversified design process may cause the failure of reaction. For example, Al should not be added into Mg-Gd alloys containing Zr generally, because Al element will not only react with Zr to generate Al3Zr phase to deteriorate the alloy structure, but also consume a large amount of rare earth in the matrix alloy, thus redu-cing the utilization ratio of rare earth elements. To sum up, two major problems must be solved in the alloying design process. Ⅰ. Innovative alloy series should be created through the rational combination of the alloying elements. Ⅱ.The optimal content ratio of various elements in the series of alloys should be determined, so as to further optimize their performance.
This article analyzes and summarizes the research progress of alloying in Mg-Gd alloys. The effect of LPSO forming elements, non-LPSO forming elements, rare earth metal elements, and non-metallic elements on Mg-Gd alloys is discussed separately. The research status of various elements in this alloy series is presented and their application prospects are proposed, which is expected to provide reference for the future alloying design of magnesium alloy.
Key words:  Mg-Gd alloys    alloying    microstructure    mechanical property
                    发布日期:  2018-11-21
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(51605159); 湖南省自然科学基金(2016JJ5042); 重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0301)
作者简介:  唐昌平:男,1983年生,博士,讲师,主要研究方向为镁合金强韧化 E-mail:tcpswnu@163.com
引用本文:    
唐昌平, 左国良, 李志云, 孙玹琪, 李权. Mg-Gd系合金的合金化研究进展[J]. 材料导报, 2018, 32(21): 3760-3767.
TANG Changping, ZUO Guoliang, LI Zhiyun, SUN Xuanqi, LI Quan. An Overview on Alloying Research of Mg-Gd Alloys. Materials Reports, 2018, 32(21): 3760-3767.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.012  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3760
1 Kahn R W, Hassen P, Kramer E J.Materials science and technology series (Volume 8): Structure and properties of nonferrous alloys-magnesium-based alloys[M].Beijing: Science Press,2000:118.
2 Rokhlin L L.Magnesium alloys containing rare earth metals: Structure and properties[M].London: Taylor & Francis,2003:44.
3 Smola B, StulíKová I, Von Buch F, et al. Structural aspects of high performance Mg alloys design[J].Materials Science and Engineering: A,2002,324(1-2):113.
4 Chang J, Guo X, He S, et al.Investigation of the corrosion for Mg-xGd-3Y-0.4Zr (x=6,8,10,12wt) alloys in a peak-aged condition[J].Corrosion Science,2008,50(1):166.
5 Wang D, Zhang W, Zong X, et al.Abundant long period stacking ordered structure induced by Ni addition into Mg-Gd-Zn alloy[J].Materials Science and Engineering: A,2014,618:355.
6 Dai J C.Study on the effects of Al and trace elements on grain refinement behavior, microstructure and mechanical properties of Mg-Gd (-Y) alloys[D].Shanghai: Shanghai Jiaotong University,2014(in Chinese).
戴吉春. Al及微量元素对Mg-Gd(-Y)合金晶粒细化行为、组织及力学性能影响的研究[D].上海:上海交通大学,2014.
7 Zhang G D, Li X G, Ma M L, et al.Influences of Al on microstructures and mechanical properties of as-cast Mg-Gd-Y-Nd-Zr magne-sium alloy[J].Special Casting and Nonferrous Alloys,2014(3):322(in Chinese).
张国栋,李兴刚,马鸣龙,等.Al对铸态Mg-Gd-Y-Nd-Zr合金组织及力学性能的影响[J].特种铸造及有色合金,2014(3):322.
8 Dai J, Zhu S, Easton M A, et al.Heat treatment, microstructure and mechanical properties of a Mg-Gd-Y alloy grain-refined by Al additions[J].Materials Science and Engineering: A,2013,576:298.
9 Dai J, Zhu S, Easton M A, et al.Precipitation process in a Mg-Gd-Y alloy grain-refined by Al addition[J].Materials Characterization,2014,88:7.
10 Zhang G D.The influence of trace Al on microstructures and mechanical properties of EW75 magnesium alloy[D].Beijing: Beijing Nonferrous Metals Research Institute,2014(in Chinese).
张国栋. 微量A1对EW75合金组织及力学性能的影响[D].北京:北京有色金属研究总院,2014.
11 Fang C, Liu G, Hao H, et al.Effect of Al addition on microstructure, texture and mechanical properties of Mg-5Gd-2.5Y-2Zn alloy[J].Journal of Alloys and Compounds,2016,686:347.
12 Yin J, Lu C, Ma X, et al.Investigation of two-phase Mg-Gd-Ni alloys with highly stable long period stacking ordered phases[J].Intermetallics,2016,68:63.
13 黎文献. 镁及镁合金[M].长沙:中南大学出版社,2005:11.
14 Wang Z D, Fang C F, Meng L G, et al.Microstructures and mecha-nical properties of high-strength Mg-Gd-Y-Zn-Zr alloy[J].The Chinese Journal of Nonferrous Metals,2011(1):1(in Chinese).
王振东,房灿峰,孟令刚,等.高强Mg-Gd-Y-Zn-Zr合金的微观组织和力学性能[J].中国有色金属学报,2011(1):1.
15 Zheng L, Liu C, Wan Y, et al.Microstructures and mechanical properties of Mg-10Gd-6Y-2Zn-0.6Zr(wt.) alloy[J].Journal of Alloys and Compounds,2011,509(35):8832.
16 Xu C, Zheng M Y, Xu S W, et al.Microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy sheets processed by combined processes of extrusion, hot rolling and ageing[J].Materials Science and Engineering: A,2013,559:844.
17 Homma T, Kunito N, Kamado S.Fabrication of extraordinary high-strength magnesium alloy by hot extrusion[J].Scripta Materialia,2009,61(6):644.
18 Wei L Y.Effect of Li on microstructure and properties of Mg-Gd-Zn alloys with long-period stacking ordered structure[D].Taiyuan: Taiyuan University of Technology,2016(in Chinese).
魏礼运. Li对长周期有序堆垛结构强化的Mg-Gd-Zn合金组织和性能的影响[D].太原:太原理工大学,2016.
19 Zhang Jinshan, Sun Yan, Cheng Weili, et al.The effect of Ca addition on microstructures and mechanical properties of Mg-RE based alloys[J].Journal of Alloys and Compounds,2013,554:110.
20 Cheng R J, Pan F S, Yang M B, et al.Application and new developments of strontium in magnesium Alloys[J].Materials Review,2008(5):63(in Chinese).
程仁菊,潘复生,杨明波,等.锶在镁合金中的应用及其研究新进展[J].材料导报,2008(5):63.
21 Li H L.Basic research about controlling of microstructure and mechanical properties for Mg-Gd-Sr/Ca magnesium alloys[D].Chongqing: Chongqing University of Science and Technology,2014(in Chinese).
李洪亮. Mg-Gd-Sr/Ca系镁合金组织和性能控制的基础研究[D].重庆:重庆理工大学,2014.
22 Chen L L.Research on microstructures and properties of Mg-Gd-Y-(Sr)-Zr alloys[D].Luoyang: Henan University of Science and Technology,2015(in Chinese).
陈雷雷.Mg-Gd-Y(Sr)-Zr合金组织和性能的研究[D].洛阳:河南科技大学,2015.
23 He S M.Study on the microstructural evolution, properties and fracture behavior of Mg-Gd-Y-Zr(-Ca) alloys[D].Shanghai: Shanghai Jiaotong University,2007(in Chinese).
何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D].上海:上海交通大学,2007.
24 Rokhlin L L.Magnesium alloys containing rare earth metals: Structure and properties (Advances in metallic alloys)(v.3)[M].London: CRC Press,2003:264.
25 陈振华. 镁合金[M].北京:化学工业出版社,2004:22.
26 Zeng X Q.Progress in the research and application of rare earth magnesium alloys[J].Rare Earth Information,2016(2):26(in Chinese).
曾小勤. 稀土镁合金研究与应用进展[J].稀土信息,2016(2):26.
27 Wu Y X.Effect of rare earth element La on microstructure and pro-perties of Mg alloy for automobile[J].Hot Working Technology,2016(10):86(in Chinese).
吴延霞. 稀土元素La对汽车用镁合金组织和性能的影响[J].热加工工艺,2016(10):86.
28 Xin M D, Ji Z S.Study on the application of rare earth elements in casting magnesium alloys and its development trend[J].Journal of China Rare Earth Society,2010(6):643(in Chinese).
辛明德,吉泽升.稀土元素在铸造镁合金中应用的研究现状及其发展趋势[J].中国稀土学报,2010(6):643.
29 Zhang D F, Qi F G, Lan W, et al.Effects of Ce addition on microstructure and mechanical properties of Mg-6Zn-1Mn alloy[J].Tran-sactions of Nonferrous Metals Society of China,2011,21(4):703.
30 Apps P J, Karimzadeh H, King J F, et al.Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium[J].Scripta Materialia,2003,48(5):475.
31 Negishi Y, Nishimura T, Iwasawa S, et al.Aging characteristics and tensile properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr alloys[J].Journal of Japan Institute of Light Metals,1994,44(10):555.
32 Zheng K Y, Zeng X Q, Dong J, et al.Effect of initial temper on the creep behavior of a Mg-Gd-Nd-Zr alloy[J]. Materials Science and Engineering:A,2008,492(1-2):185.
33 Zhang J, Kang Z, Wang F.Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing[J].Materials Science and Engineering: C,2016,68:194.
34 Peng Q, Wang J, Wu Y, et al.The effect of La or Ce on ageing response and mechanical properties of cast Mg-Gd-Zr alloys[J].Mate-rials Characterization,2008,59(4):435.
35 Zhao F J.Effects of cerium on microstructure and properties of Mg-Gd-Y-Nd-Zr alloy[D].Changsha: Central South University,2012(in Chinese).
赵凤景. 铈对Mg-Gd-Y-Nd-Zr合金组织与性能的影响[D].长沙:中南大学,2012.
36 Deng Y L, Zhou Y, Zhao F J, et al.Effect of Ce on microstructure and properties of Mg-Gd-Y-Nd-Zr alloy[J].Hot Working Technology,2012(24):1(in Chinese).
邓运来,周洋,赵凤景,等.Ce对Mg-Gd-Y-Nd-Zr合金组织与性能的影响[J].热加工工艺,2012(24):1.
37 Zhang X M, Zhao F J, Deng Y L, et al.Effect of Ce element on microstructure and thermal deformation behavior of Mg-Gd-Y-Nd-Zr alloy[J].Journal of Central South University (Natural Science Edition),2011(3):890(in Chinese).
张新明,赵凤景,邓运来,等.Ce元素对Mg-Gd-Y-Nd-Zr合金组织与热变形行为的影响[J].中南大学学报(自然科学版),2011(3):890.
38 Xia X, Zhang K, Li X, et al.Microstructure and texture of coarse-grained Mg-Gd-Y-Nd-Zr alloy after hot compression[J].Materials & Design,2013,44:521.
39 Wu Y P, Zhang X M, Deng Y L, et al.Dynamic recrystallization mechanisms during hot compression of Mg-Gd-Y-Nd-Zr alloy[J].Transactions of Nonferrous Metals Society of China,2015,25(6):1831.
40 Yu Z, Huang Y, Gan W, et al.Microstructure evolution of Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt) alloy during deformation and its effect on strengthening[J].Materials Science and Engineering: A,2016,657:259.
41 Yuan L, Shi W, Jiang W, et al.Effect of heat treatment on elevated temperature tensile and creep properties of the extruded Mg-6Gd-4Y-Nd-0.7Zr alloy[J].Materials Science and Engineering: A,2016,658:339.
42 Zhang X, Tang C, Deng Y, et al.Effects of thermal treatment on precipitate shape and mechanical properties of Mg-8Gd-4Y-Nd-Zr alloy[J].Materials & Design,2011,32(10):4994.
43 Wang S D, Xu D K, Wang B J, et al.Effect of corrosion attack on the fatigue behavior of an as-cast Mg-7Gd-5Y-1Nd-0.5Zr alloy[J].Materials & Design,2015,84:185.
44 Zhang Q.Effects of Sm on microstructure and properties of Mg-Gd-Y-Zr alloy[D].Baotou: Inner Mongolia University of Science and Technology,2015(in Chinese).
张奇. Sm对Mg-Gd-Y-Zr合金组织和性能的影响[D].包头:内蒙古科技大学,2015.
45 Li K J, Li Q A.Precipitation reactions in a Mg-Gd-Y-Sm-Zr alloy at 225 ℃[J].Rare Earth,2012(5):17(in Chinese).
李克杰,李全安.Mg-Gd-Y-Sm-Zr合金225 ℃的时效析出转变过程研究[J].稀土,2012(5):17.
46 Zhang Z, Peng L, Zeng X, et al.Characterization of phases in a Mg-6Gd-4Sm-0.4Zr (wt.) alloy during solution treatment[J].Mate-rials Characterization,2009,60(6):555.
47 Zhang X M, Chen J M, Deng Y L, et al.Microstructure and mecha-nical properties of Mg-Gd-Y-(Mn,Zr) alloy[J].Chinese Journal of Nonferrous Metals,2006(2):219(in Chinese).
张新明,陈健美,邓运来,等.Mg-Gd-Y-(Mn,Zr)合金的显微组织和力学性能[J].中国有色金属学报,2006(2):219.
48 Xiao Y, Zhang X M, Chen B X, et al.Mechanical properties of Mg-9Gd-4Y-0.6Zr alloy[J].Transactions of Nonferrous Metals Society of China,2006,16(S3):1669.
49 Bi Y, Yang M B, Zou J, et al.Current research status and development of Dy-containing magnesium alloys[J].Journal of Chongqing University of Technology (Natural Science),2017,31(12):63(in Chinese).
毕媛,杨明波,邹静,等.含Dy镁合金的研究现状及最新进展[J].重庆理工大学学报(自然科学),2017,31(12):63.
50 Peng Q, Dong H, Wang L, et al.Aging behavior and mechanical properties of Mg-Gd-Ho alloys[J].Materials Characterization,2008,59(8):983.
51 Zhang J, Leng Z, Liu S, et al.Microstructure and mechanical pro-perties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults[J].Journal of Alloys and Compounds,2011,509(29):7717.
52 Peng Q, Wang L, Wu Y, et al.Structure stability and strengthening mechanism of die-cast Mg-Gd-Dy based alloy[J].Journal of Alloys and Compounds,2009,469(10):587.
53 Peng Q, Dong H, Wang L, et al.Microstructure and mechanical property of Mg-8.31Gd-1.12Dy-0.38Zr alloy[J].Materials Science and Engineering: A,2008,477(1-2):193.
54 Wang X, Wang Z, Du W, et al.Microstructure evolutions of Mg-8Gd-2Er (wt.) alloy during isothermal ageing at 200 ℃[J].Journal of Rare Earths,2012,30(11):1168.
55 Peng Q, Dong H, Wu Y, et al.Age hardening and mechanical pro-perties of Mg-Gd-Er alloy[J].Journal of Alloys and Compounds,2008,456(1-2):395.
56 Wang Z H, Du W B, Wang X D, et al.Microstructure evolution of Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment[J].Transactions of Nonferrous Metals Society of China,2013,23(3):593.
57 Wang J, Song P, Huang S, et al.Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg-9Gd-xEr-1.6Zn-0.6Zr magnesium alloys[J].Materials Science and Engineering: A,2013,563:36.
58 Wen K, Liu K, Wang Z, et al.Effect of microstructure evolution on mechanical property of extruded Mg-12Gd-2Er-1Zn-0.6Zr alloys[J].Journal of Magnesium and Alloys,2015,3(1):23.
59 Zhang X, Wang Z, Du W, et al.Microstructures and mechanical properties of Mg-13Gd-5Er-1Zn-0.3Zr alloy[J].Materials & Design,2014,58:277.
60 Yang M B, Shen J, Pan F S, et al.Research and development of magnesium alloys containing Sc[J].Foundry,2008(5):433(in Chinese).
杨明波,沈佳,潘复生,等.含Sc镁基合金的研究现状及进展[J].铸造,2008(5):433.
61 Fang X Y, Yi D Q, Nie J F, et al.Effect of Zr, Mn and Sc additions on the grain size of Mg-Gd alloy[J].Journal of Alloys and Compounds,2009,470(1-2):311.
62 Zhang X J.Effects of trace addition of element Sc and Mn on microstructure and properties of Mg-Gd alloy[D].Changsha: Central South University,2008(in Chinese).
张小娟. 微量添加元素Sc、Mn对Mg-Gd合金组织性能的影响[D].长沙:中南大学,2008.
63 Yao S J.Preparation of Mg-Gd-Y-(Sc) alloy and its high temperature performance[D].Changsha: Central South University,2009(in Chinese).
姚素娟. Mg-Gd-Y-(Sc)合金的制备技术和高温性能研究[D].长沙:中南大学,2009.
64 Liu B.Effect of Sc, Sb on the microstructure and mechanical properties of Mg-Gd-Y alloy[D].Nanjing: Nanjing University of Aeronautics and Astronautics,2009(in Chinese).
刘彪. Sc、Sb对Mg-Gd-Y合金组织和性能的影响[D].南京:南京航空航天大学,2009.
65 Huang S, Wang J, Hou F, et al.Effect of Sn on the formation of the long period stacking ordered phase and mechanical properties of Mg-RE-Zn alloy[J].Materials Letters,2014,137:143.
66 Zhang L, Gong M, Peng L M.Microstructure and strengthening mechanism of a thermomechanically treated Mg-10Gd-3Y-1Sn-0.5Zr alloy[J].Materials Science and Engineering:A,2013,565:262.
67 张磊,龚明,彭良明.Mg-Gd-Y-Sn-Zr高强耐热镁合金的微观结构与力学性能[C]∥2012年海峡两岸破坏科学/材料试验学术会议.西安,2012:1.
68 Wang Q, Chen J, Zhao Z, et al.Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy[J].Materials Science and Engineering:A,2010,528(1):323.
69 Movahedi-Rad A, Mahmudi R, Wu G H, et al.Enhanced superplasticity in an extruded high strength Mg-Gd-Y-Zr alloy with Ag addition[J].Journal of Alloys and Compounds,2015,626:309.
70 Chen J, Wang Q D, Zhao Z, et al.Microstructure and properties of Mg-8.5Gd-2.0Y-1.0Ag-0.4Zr alloy with high strength and ductility[J].Journal of High Technology Communication,2010(4):427(in Chinese).
陈杰,王渠东,赵政,等.高强高韧Mg-8.5Gd-2.0Y-1.0Ag-0.4Zr合金的组织与性能[J].高技术通讯,2010(4):427.
71 Zhou H, Wang Q D, Chen J, et al.Microstructure and mechanical properties of extruded Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy[J].Tran-sactions of Nonferrous Metals Society of China,2012,22(8):1891.
72 Liu Z Y.Design and fabrication of high-strength and high-modulus of Mg-RE-Si alloys[D].Changsha: Central South University,2014(in Chinese).
刘钊扬. 高模高强Mg-RE-Si合金的设计与制备[D].长沙:中南大学,2014.
73 Zhang D F, Li P C, Tang A, et al.Research on influence of silicon on microstructure and properties of magnesium alloy[J].Hot Wor-king Technology,2010(18):1(in Chinese).
张丁非,李鹏程,汤安,等.Si对镁合金组织和性能影响的研究现状[J].热加工工艺,2010(18):1.
74 Hu J, Zhang X, Tang C, et al.Microstructures and mechanical properties of the Mg-8Gd-4Y-Nd-Zn-3Si (wt) alloy[J].Materials Science and Engineering:A,2013,571:19.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[7] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[8] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[9] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[10] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[11] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[12] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[13] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[14] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[15] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed