Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3276-3280    https://doi.org/10.11896/j.issn.1005-023X.2018.18.032
  高分子与聚合物基复合材料 |
树脂/聚醚砜复合膜的制备及其对碘离子的吸附性能
于凤芹, 王海增
中国海洋大学化学化工学院,海洋化学工程与技术教育部重点实验室,青岛 266100
Preparation and Application of PES/Resin Composite Membrane Adsorbents in the Removal of Iodide Ion
YU Fengqin, WANG Haizeng
Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
下载:  全 文 ( PDF ) ( 2287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚醚砜(PES)为膜的基质材料,以粉末状阴离子交换树脂(201×7)为功能颗粒,采用相转化的方法制备了阴离子交换树脂/聚醚砜复合膜。用扫描电子显微镜(SEM)对膜形貌进行表征,采用电子拉伸试验机测定了复合膜的力学性能,采用傅里叶红外光谱(FTIR)对膜吸附机理进行了研究。SEM结果表明,树脂颗粒在聚合物膜中均匀镶嵌分布,树脂的添加提高了膜的孔隙率,且树脂含量越大孔径越大,复合膜的机械拉伸强度随树脂含量的增加而略有降低。选用树脂含量为60%(w/w)的复合膜进行吸附性能研究,结果表明,吸附可在120 min内达到平衡,该吸附膜在pH值为3~9范围内对碘离子有很好的吸附去除效果;吸附量随初始浓度增加而增加,吸附符合Freundlich模型,无饱和吸附量,说明多层吸附在吸附过程中发挥重要作用。共存阴离子如硫酸根、氯离子、硝酸根离子的存在会降低碘离子吸附量。FTIR结果表明,复合膜对碘离子的吸附主要是物理吸附。吸附碘离子的复合膜可以脱附再生,且多次再生后,吸附量未见降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于凤芹
王海增
关键词:  树脂  复合膜  碘离子  吸附    
Abstract: PES/resin blend flat sheet membranes were prepared by phase inversion process. The powder anion exchange resin (201×7) was used as the functional material and the polyethersulfone (PES) was used as matrix material. The membranes’ morphology was characterized by scanning electron microscopy (SEM). The tensile strength of the membranes was tested by electronic tensile testing machine. The adsorption mechanism of membranes was studied by FTIR. The results of SEM indicated that, the addition of resin caused an increase in surface porosity of the PES/resin composite membrane and the resin was homogeneous mixing in the membranes. The tensile strength of the composite membranes decreased slightly with the increase of resin content. The iodide adsorption capacity of the membranes (the resin content ratio was 60% weight by weight)was evaluated. The contact adsorption experiment showed that the equilibrium of the adsorption could be reached within 120 min. The batch adsorption studies demonstrated that the membrane adsorbents could be applied for efficient adsorption removal of iodide ion in an extensive pH range from 3 to 9. Adsorption results showed that the adsorption amount increased with the increasing of initial concentration for iodide ion, and the Freundlich model was more suited the multilayer adsorption. It indicated that the multilayer adsorption played an important role in the adsorption process. The presence of other anions such as sulfate ion chloridion and nitrate ion could decrease the adsorption amount of iodide ion. In addition, Fourier transform infrared spectroscopy showed that the adsorption of the composite membranes was physical adsorption. Finally, the iodide loaded composite membranes were regenerated and the removing efficiency of iodide didn’t reduce with the increase of regeneration times.
Key words:  resin    composite membrane    iodide ion    adsorbent
                    发布日期:  2018-10-18
ZTFLH:  TB333  
  X52  
基金资助: 山东省自主创新重大专项计划(931248050)
通讯作者:  王海增:男,1965年生,教授,研究方向为海水资源的综合应用 E-mail:haizwang@ouc.edu.cn   
作者简介:  于凤芹:女,1987年生,博士研究生,研究方向为碘吸附材料的制备与除碘应用 E-mail:yu1110@126.com
引用本文:    
于凤芹, 王海增. 树脂/聚醚砜复合膜的制备及其对碘离子的吸附性能[J]. 材料导报, 2018, 32(18): 3276-3280.
YU Fengqin, WANG Haizeng. Preparation and Application of PES/Resin Composite Membrane Adsorbents in the Removal of Iodide Ion. Materials Reports, 2018, 32(18): 3276-3280.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.032  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3276
1 Shen D H, Kloos R T, Mazzaferri E L, et al. Sodium iodide symporter in health and disease[J].Thyroid,2001,11(5):415.
2 Winkler R. Iodine—A potential antioxidant and the role of iodine/iodide in health and disease[J].Natural Science,2015,7(12):548.
3 Hoshi M, Stepanenko V F, et al. I-129 and I-131 ground deposition densities are correlated in Belorussian settlements contaminated following the Chernobyl accident[C]∥6th International Chernobyl Sasakawa Medical Cooperation Symposium. Moscow,2001:115.
4 Li B, Dong X, Wang H, et al. Functionalized metal organic frameworks for effective capture of radioactive organic iodides[J].Faraday Discussions,2017,201:47.
5 Huang W J, Singh O, Chen C H, et al. Activation of iodosobenzene by catalytic tetrabutylammonium iodide and its application in the oxidation of some isoquinoline alkaloids[J].Helvetica Chimica Acta,2015,85(4):1069.
6 Mondal J, Ghorai A, Singh S K, et al. Synthesis, structure, photophysical and catalytic properties of CuI-iodide complexes of di-imine ligands[J].Journal of Molecular Structure,2016,1108(10):315.
7 Endo M, Masuda T, Uchiyama T. Development of hybrid simulation for supersonic chemical oxygen-iodine laser[J].AIAA Journal,2015,45(45):90.
8 Wang M, Chamberland N, Breau L, et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells[J].Nature Chemistry,2010,2(5):385.
9 Trumbo P R. FDA regulations regarding iodine addition to foods and labeling of foods containing added iodine[J].American Journal of Clinical Nutrition,2016,104(S3):864S.
10 Andersson M, Mattsson S, Minarik D, et al. Revised dose calculations for iodide I-123, I-124, I-125 and I-131 for diagnostic procedures in nuclear medicine[J].Journal of Nuclear Medicine,2014,55(S1):419.
11 Saltanat S K, Aliya B, Ata A. Non-cyanide leaching processes in gold hydrometallurgy and iodine-iodide applications: A review[J].Mineral Processing and Extractive Metallurgy Review,2015,36(3):198.
12 Hiroshi K. Method for extracting iodine: Japan,52-0521959 [P].1977-04-26.
13 Abekenzo. Production of iodine: Japan,51-149455 [P].1976-12-14.
14 Hatazaki, Yoshinori. Process for purifing natual salt water:Japan,50-060949 [P].1975-05-23.
15 Hu H, Xie T, Wang J F, et al. Study on recovery iodine from wet-process phosphoric acid by solvent flotation[J].Inorganic Chemicals Industry,2008,40(3):41(in Chinese).
胡宏,解田,王景峰,等.溶剂浮选法回收湿法磷酸中碘的研究[J].无机盐工业,2008,40(3):41.
16 Ikari M, Matsui Y, Suzuki Y, et al. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon[J].Water Research,2015,68(1):227.
17 Koyama K, Tanaka M, Shibata J. Generation of iodine by galvanostatic electrolysis[J].Resources Processing,2011,58(4):136.
18 Yan L, Li Y S, Xiang C B. Preparation of poly(vinylidene fluoride)(PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research[J].Polymer,2005,46(18):7701.
19 Chen J H, Sun X, Weng W, et al. Recovery and investigation of Cu (Ⅱ) ions by tannin immobilized porous membrane adsorbent from aqueous solution[J].Chemical Engineering Journal,2015,273:19.
20 Zhao R, Li X, Sun B, et al. Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: A novel and effective adsorbent for Cr (VI) remediation in wastewater[J].Journal of Materials Chemistry A,2017,5(3):1133.
21 Baheri B, Ghahremani R, Peydayesh M, et al. Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: Preparation, characterization, adsorption, kinetics, and thermodynamics[J].Research on Chemical Intermediates,2016,42(6):5309.
22 Lyczewska M, Kakietek M, Maksymiuk K, et al. Comparison of trihexadecylalkylammonium iodides as ion-exchangers for polyacrylate and poly(vinyl chloride) based iodide-selective electrodes[J].Sensors and Actuators B: Chemical,2010,146(1):283.
23 Lv L, He J, Wei M, et al. Factors influencing the removal of fluo-ride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides[J].Journal of Hazardous Materials,2006,133(1-3):119.
24 Wu T, Mao L, Wang H. Adsorption of fluoride on Mg/Fe layered double hydroxides material prepared via hydrothermal process[J].RSC Advances,2015,5(30):23246.
25 潘才元.功能高分子[M].北京:科学出版社,2006:6.
26 Mahmoodi N M, Hayati B, Arami M, et al. Adsorption of textile dyes on pine cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies[J].Desalination,2011,268(1-3):117.
27 Xu X, Li Q, Cui H, et al. Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres[J].Desalination,2011,272(1-3):233.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[4] 张政, 刘标, 高延敏. 端乙烯基硅氧烷对水性丙烯酸树脂的改性[J]. 材料导报, 2019, 33(z1): 519-522.
[5] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[6] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[7] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[8] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[9] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[10] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[11] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[12] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[13] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[14] 武海良, 杨倩, 张希文, 沈艳琴, 姚一军. EVA基纺织品用热熔胶的形成:组分含量和参数调控[J]. 材料导报, 2019, 33(6): 1070-1073.
[15] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed