Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2601-2608    https://doi.org/10.11896/j.issn.1005-023X.2018.15.010
  无机非金属及其复合材料 |
三维石墨烯材料的制备及在水处理中的应用研究进展
岳焕娟1,2,3, 孙红娟1,2, 彭同江3, 刘波2, 杨敬杰2, 梁小毅2
1 西南科技大学环境与资源学院,绵阳 621010;
2 西南科技大学固体废物处理与资源化教育部重点实验室,绵阳 621010;
3 西南科技大学矿物材料及应用研究所,绵阳 621010
Progress in Preparation of Three-dimensional Graphene Materials and Their Applications in Water Treatment
YUE Huanjuan1,2,3, SUN Hongjuan1,2, PENG Tongjiang3, LIU Bo2, YANG Jingjie2, LIANG Xiaoyi2
1 School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010;
2 Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest Universityof Science and Technology, Mianyang 621010;
3 Institute of Mineral Materials and Application,Southwest University of Science and Technology, Mianyang 621010
下载:  全 文 ( PDF ) ( 2263KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着经济的快速发展,越来越多的污染物质进入水体,污染环境,危害人体健康,污染废水亟待净化处理。在众多污水处理方法中,吸附法因经济、高效而被广泛使用。相较于传统吸附剂,石墨烯材料作为一种新型碳材料,具有比表面积大、化学稳定性好、含氧官能团丰富、可修饰性强等优点,对水体中的污染物具有较强的吸附能力。但二维石墨烯材料因片薄、粒径细小,在吸附污染物后较难实现固液分离,从而产生二次污染。将二维石墨烯组装成三维多孔网状聚集体,不仅能有效阻止石墨烯结构层的堆积,促进污染物的扩散吸附,还有利于吸附污染物后的固液分离。因此,在水污染处理领域,三维石墨烯吸附材料逐渐成为研究的焦点。
三维石墨烯材料是以(氧化)石墨烯为主体交联形成的多孔网状宏观体新材料,继承了本征石墨烯良好的理化性能。其多孔网状纳米结构赋予自身较高的孔隙率和较快的溶质传输速度等特性,使其在水污染处理中具有良好应用前景。利用不同的化学物质,采取不同的制备方法对石墨烯材料进行接枝改性、掺杂复合等,可促进石墨烯三维宏观结构和微观孔隙结构的形成。综合国内外研究成果发现,三维石墨烯主要通过静电相互作用、π-π堆叠作用、疏水作用、氢键作用和络合作用等与污染物质结合,实现污染物的去除。对于阳离子污染物质,增加三维石墨烯材料表面的活性基团及吸附位点,可有效提高其对阳离子物质的吸附容量,优化其耐酸碱性,并提高吸附质的脱附率。而疏水亲油的三维石墨烯材料是去除油类污染物质的理想吸附材料,提高其孔隙率、比表面积和机械强度可大幅提高吸附材料的吸附性能,增强其弹性强度及热稳定性可显著提高其循坏再生性能。
基于水环境污染治理的迫切需求以及三维石墨烯材料优异的吸附性能,本文从水污染治理角度出发,系统总结了水热自组装法、溶剂热自组装法、化学气相沉积法、有机高分子模板法和冰模板法等制备三维石墨烯材料的机理,综述了三维石墨烯材料在含染料、油污等有机污染物以及重金属离子废水中的吸附应用,并对其研究前景和发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳焕娟
孙红娟
彭同江
刘波
杨敬杰
梁小毅
关键词:  三维石墨烯材料  吸附  重金属  有机污染物    
Abstract: With the rapid development of economy, more and more pollutants have entered the waters, leading to the environment pollution and endangering human health. Therefore, the purification and treatment of polluted waste water are extremely urgent. In many sewage treatment methods, adsorption method is widely used because it is economical and highly efficient. Compared with the traditional adsorbents, graphene material, as a new type of carbon material, has the advantages of large surface area, excellent chemical stability, rich oxygen functional groups and strong modifiability, and it has strong adsorption capacity for pollutants in water. Nevertheless, the thin film and fine particle size of two-dimensional graphene make its separation from water after the adsorption of pollutants difficult, thus causing secondary pollution. If the two dimensional graphene is assembled to three dimensional po-rous network aggregates, it can not only prevent the accumulation of graphene structure layer effectively, but also facilitate the diffusion and adsorption of pollutants, and contribute to the solid-liquid separation after adsorption. Therefore, in the field of water pollution treatment, three dimensional graphene adsorbents have gradually become the research focus.
The three-dimensional graphene material ia a new kind of porous block material which is mainly formed by the cross-linking of graphene or graphene oxidized. It inherits the excellent physical and chemical properties of intrinsic graphene. The nano porous structure endow three-dimensional graphene with high porosity and high solute transmission speed and other favorable characteristics, which decide its vast application prospects in water pollution treatment. Different chemical substances and various preparation met-hods can be adopted to graft and modify graphene materials, in the purpose of promoting the formation of the three-dimensional macrostructure and micropore structure of graphene. According to the research results at home and abroad, it can be found that the forces of three dimensional graphene adsorbing pollutants mainly include electrostatic interaction, π-π stacking, hydrophobic interaction, hydrogen bonding and complexation. For cationic pollutants, increasing the active groups and adsorption sites on the surface of three dimensional graphene can effectively improve the adsorption capacity, and optimizing their acid and alkaline resistance can effectively improve the desorption rate of adsorbents. The hydrophobic lipophilic three-dimensional graphene material is the ideal material for oil pollution removal. Improving the porosity, specific surface area and mechanical strength can greatly improve the adsorption capacity, and enhancing its elastic strength and thermal stability can significantly improve the performance of the cycle of regeneration.
In consideration of the urgent needs of water pollution control and excellent adsorption performance of three-dimensional graphene materials, we systematically summarized the mechanism of three-dimensional graphene materials prepared by hydrothermal self-assembly method, solvothermal self-assembly method, chemical vapor deposition, organic polymer template method and ice template method from the perspective of water pollution control. In addition, the applications of 3D graphene materials in the adsorption of organic pollutants like dye, oil and heavy metal ions in waste water are introduced. Finally, the research prospect and development trend of three-dimensional graphene are proposed.
Key words:  three-dimensional graphene materials    absorption    heavy metals    organic pollutants
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  O613.71  
  O647.3  
基金资助: 国家自然科学基金(41272036;U1630132);四川省科技厅项目(2017GZ0114);西南科技大学研究生创新基金(16ycx044)
通讯作者:  孙红娟:通信作者,女,1976年生,教授,博士研究生导师,研究方向为层状矿物的晶体化学 E-mail:sunhongjuan@swust.edu.cn   
作者简介:  岳焕娟:女,1991年生,硕士研究生,研究方向为石墨烯的制备及环境应用 E-mail:yuehuanjuan@163.com
引用本文:    
岳焕娟, 孙红娟, 彭同江, 刘波, 杨敬杰, 梁小毅. 三维石墨烯材料的制备及在水处理中的应用研究进展[J]. 材料导报, 2018, 32(15): 2601-2608.
YUE Huanjuan, SUN Hongjuan, PENG Tongjiang, LIU Bo, YANG Jingjie, LIANG Xiaoyi. Progress in Preparation of Three-dimensional Graphene Materials and Their Applications in Water Treatment. Materials Reports, 2018, 32(15): 2601-2608.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.010  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2601
1 Zhang X. Trend of and the governance system for water pollution in China[J].China Soft Science,2014(10):11(in Chinese).
张晓.中国水污染趋势与治理制度[J].中国软科学,2014(10):11.
2 Yang R X. Research progress of source and treatment technology of heavy metal pollution in water[J].Resource Conservation and Environmental Protection,2016(4):66(in Chinese).
杨瑞香.水体重金属污染来源及治理技术研究进展[J].资源节约与环保,2016(4):66.
3 Zang Z L, Sun X L. Present situation and sevelopment of dye wastewater treatment technology[J].Chemical Engineering Design Communications,2017(3):205(in Chinese).
张中领,孙晓玲.染料废水处理技术现状与发展[J].化工设计通讯,2017(3):205.
4 Nielsen E S. The use of radio-active carbon (C14) for measuring organic production in the sea[J].Journal du Conseil,1952,18(2):117.
5 Saleh T A, Sar¹A, Tuzen M. Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon[J].Journal of Environmental Chemical Engineering,2017,5(1):1079.
6 Hu B, Luo H, Chen H, et al. Adsorption of chromate and para-nitrochlorobenzene on inorganic-organic montmorillonite[J].Applied Clay Science,2011,51(1):198.
7 Wang L, Wang A. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite[J].Journal of Hazardous Materials,2008,160(1):173.
8 Erdem E, Karapinar N, Donat R. The removal of heavy metal ca-tions by natural zeolites[J].Journal of Colloid and Interface Science,2004,280(2):309.
9 He K, Chen Y, Tang Z, et al. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash[J].Environmental Science and Pollution Research,2016,23(3):2778.
10 Bois L, Bonhommé A, Ribes A, et al. Functionalized silica for heavy metal ions adsorption[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2003,221(1):221.
11 Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J].Advanced Materials,2010,22(35):3906.
12 Kemp K C, Seema H, Saleh M, et al. Environmental applications using graphene composites: water remediation and gas adsorption[J].Nanoscale,2013,5(8):3149.
13 Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558.
14 Ren R, Li W, Lv Y. A robust, superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures[J].Journal of Colloid and Interface Science,2017,500:63.
15 Liu J, Ge X, Ye X, et al. 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions[J].Journal of Materials Chemistry A,2016,4(5):1970.
16 Xiao J, Lv W, Xie Z, et al. L-cysteine-reduced graphene oxide/poly (vinyl alcohol) ultralight aerogel as a broad-spectrum adsorbent for anionic and anionic and cationic dyes[J].Journal of Materials Science,2017,52(10):5807.
17 Wu R, Yu B, Jin X, et al. Preparation of graphene sponge by vapor phase reduction for oil and organic solvent removal[J].Materials Research Express,2016,3(10):1.
18 Song X, Chen Y, Rong M, et al. A phytic acid-induced super-amphiphilic multifunctional 3D graphene-based foam[J].Angewandte Chemie International Edition,2016,55(12):3936.
19 Ren H, Shi X, Zhu J, et al. Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption[J].Journal of Materials Science,2016,51(13):6419.
20 Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(7):4324.
21 Bi H, Yin K, Xie X, et al. Low temperature casting of graphene with high compressive strength[J].Advanced Materials,2012,24(37):5124.
22 Zhao J, Ren W, Cheng H M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J].Journal of Materials Chemistry,2012,22(38):20197.
23 Gao H, Sun Y, Zhou J, et al. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification[J].ACS Applied Materials & Interfaces,2013,5(2):425.
24 Jiang X, Ma Y, Li J, et al. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage[J].Journal of Physical Chemistry C,2010,114(51):22462.
25 Wang D D, Gao H. Synthesis and magnetic properties of three-dimensional self-assembly Eu3+-graphene composite material[J].Acta Physica Sinica,2013(18):451(in Chinese).
汪冬冬,高辉.三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究[J].物理学报,2013(18):451.
26 Wu Z S, Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J].Advanced Materials,2012,24(37):5130.
27 Lin Q, Li Y, Yang M. Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature[J].Sensors & Actuators B Chemical,2012,173(10):139.
28 Van Hoa N, Khong T T, Quyen T T H, et al. One-step facile synthesis of mesoporous graphene/Fe3O4/chitosan nanocomposite and its adsorption capacity for a textile dye[J].Journal of Water Process Engineering,2016,9:170.
29 Xu L, Xiao G, Chen C, et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J].Journal of Materials Chemistry A,2015,3(14):7498.
30 Zhang X, Liu D, Yang L, et al. Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis[J].Journal of Materials Chemistry A,2015,3(18):10031.
31 Fang Z, Hu Y, Zhang W, et al. Shell-free three-dimensional graphene-based monoliths for the aqueous adsorption of organic pollutants[J].Chemical Engineering Journal,2017,316:24.
32 Li Y, Cui W, Liu L, et al. Removal of Cr (VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction[J].Applied Catalysis B: Environmental,2016,199:412.
33 Zhuang Y, Yu F, Ma J, et al. Facile synthesis of three-dimensional graphene-soy protein aerogel composites for tetracycline adsorption[J].Desalination and Water Treatment,2016,57(20):9510.
34 Sui Z, Meng Q, Zhang X, et al. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification[J].Journal of Materials Chemistry,2012,22(18):8767.
35 Chung J S, Kim E J, Hur S H. The molecular level control of three-dimensional graphene oxide hydrogel structure by using various diamines[J].Chemical Engineering Journal,2014,246:64.
36 Wu Z, Liu F, Li C, et al. A sandwich-structured graphene-based composite: Preparation, characterization, and its adsorption behavi-ors for Congo red[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,509:65.
37 Zou Z Y, Dai B Y, Liu Z F. CVD process engineering for designed growth of graphene[J].Scientla Sinica Chimica,2013(1):1(in Chinese).
邹志宇,戴博雅,刘忠范.石墨烯的化学气相沉积生长与过程工程学研究[J].中国科学:化学,2013(1):1.
38 Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J].Nano Letters,2008,9(1):30.
39 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706.
40 Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J].Nature Materials,2011,10(6):424.
41 Zhang L L, Xiong Z, Zhao X S. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation[J].ACS Nano,2010,4(11):7030.
42 Min B H, Kim D W, Kim K H, et al. Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode[J].Carbon,2014,80:446.
43 Li W, Gao S, Wu L, et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions[J].Scientific Reports,2013,3(7):1.
44 Sutter P W, Flege J, Sutter E A. Epitaxial graphene on ruthenium[J].Nature Materials,2008,7(5):406.
45 Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312.
46 Coraux J, N'Diaye A T, Busse C, et al. Structural coherency of graphene on Ir(111)[J].Nano Letters,2008,8(2):565.
47 Yang S, Chen L, Mu L, et al. Graphene foam with hierarchical structures for the removal of organic pollutants from water[J].RSC Advances,2016,6(6):4889.
48 Chi C, Xu H, Zhang K, et al. 3D hierarchical porous graphene aerogels for highly improved adsorption and recycled capacity[J].Mate-rials Science and Engineering:B,2015,194:62.
49 Choi B G, Yang M, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J].ACS Nano,2012,6(5):4020.
50 Yang Z Y, Jin L J, Lu G Q, et al. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance[J].Advanced Functional Materials,2014,24(25):3917.
51 Ge J, Shi L, Wang Y, et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill[J].Nature Nanotech-nology,2017,12(5):434.
52 Compton O C, An Z, Putz K W, et al. Additive-free hydrogelation of graphene oxide by ultrasonication[J].Carbon,2012,50(10):3399.
53 Sun H, Cao L, Lu L. Bacteria promoted hierarchical carbon mate-rials for high-performance supercapacitor[J].Energy & Environmental Science,2012,5(3):6206.
54 Deng J, Lei B, He A, et al. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers[J].Journal of Hazardous Materials,2013,263:467.
55 Qiu L, Yang X, Gou X, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives[J].Chemistry-A European Journal,2010,16(35):10653.
56 Ai W, Du Z, Liu J, et al. Formation of graphene oxide gel via the π-stacked supramolecular self-assembly[J].RSC Advances,2012,2(32):12204.
57 Shao J, Wu S, Zhang S, et al. Graphene oxide hydrogel at solid/liquid interface[J].Chemical Communications,2011,47(20):5771.
58 Gao W, Majumder M, Alemany L B, et al. Engineered graphite oxide materials for application in water purification[J].ACS Applied Materials & Interfaces,2011,3(6):1821.
59 Kabiri S, Tran D N H, Cole M A, et al. Functionalized 3-dimensio-nal (3-d) graphene composite for high efficiency removal of mercury[J].Environmental Science-Water Research & Technology,2016,2(2):390.
60 Ding Y, Zhu J, Wang C, et al. Multifunctional three-dimensional graphene nanoribbons composite sponge[J].Carbon,2016,104:133.
61 Liu F, Chung S, Oh G, et al. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal[J].ACS Applied Materials & Interfaces,2012,4(2):922.
62 Mi X, Huang G, Xie W, et al. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions[J].Carbon,2012,50(13):4856.
63 Zhao L, Yu B, Xue F, et al. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption[J].Journal of Hazardous Materials,2015,286:449.
64 Xing L, Hou S, Zhou J, et al. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption[J].Journal of Solid State Chemistry,2015,230:224.
65 Vadahanambi S, Lee S, Kim W, et al. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures[J].Environmental Science & Technology,2013,47(18):10510.
66 Wu S, Zhang K, Wang X, et al. Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide[J].Chemical Enginee-ring Journal,2015,262:1292.
67 Ye Y, Yin D, Wang B, et al. Synthesis of three-dimensional Fe3O4/graphene aerogels for the removal of arsenic ions from water[J].Journal of Nanomaterials,2015,16(1):1.
68 Cui L, Guo X, Wei Q, et al. Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: Sorption kinetic and uptake mechanism[J].Journal of Colloid and Interface Science,2015,439:112.
69 Wu L P, Liu S J, Zhang W Q, et al. Preparation of new three-dimensional graphene oxide materials and its adsorption of methylene blue[J].Functional Materials,2015(16):16074(in Chinese).
武里鹏,刘淑娟,张伟强,等.新型三维立体结构氧化石墨烯材料的制备及其对亚甲基蓝的吸附[J].功能材料,2015(16):16074.
70 Yang Y, Zhao Y, Sun S, et al. Self-assembled three-dimensional graphene/Fe3O4 hydrogel for efficient pollutant adsorption and electromagnetic wave absorption[J].Materials Research Bulletin,2016,73:401.
71 Wang Y, Xia G, Wu C, et al. Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B[J].Carbohydrate Polymers,2015,115:686.
72 Martín-Jimeno F J, Suárez-García F, Paredes J I, et al. Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their perfor-mance towards CO2 and dye adsorption[J].Carbon,2015,81:137.
73 Sajab M S, Chia C H, Chan C H, et al. Bifunctional graphene oxide-cellulose nanofibril aerogel loaded with Fe (III) for the removal of cationic dye via simultaneous adsorption and Fenton oxidation[J].RSC Advances,2016,6(24):19819.
74 Sun X F, Guo B B, He L, et al. Electrically accelerated removal of organic pollutants by a three-dimensional graphene aerogel[J].AIChE Journal,2016,62(6):2154.
75 Wu T, Chen M, Zhang L, et al. Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance[J].Journal of Materials Chemistry A,2013,1(26):7612.
76 Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J].Advanced Materials,2013,25(18):2554.
77 Wang J, Shi Z, Fan J, et al. Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids[J].Journal of Materials Chemistry,2012,22(42):22459.
78 Zhao L, Dong P, Xie J, et al. Porous graphene oxide-chitosan aerogel for tetracycline removal[J].Materials Research Express,2013,1(1):1.
79 Wang J, Shi Z, Fan J, et al. Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids[J].Journal of Materials Chemistry,2012,22(42):22459.
80 Zhao Y, Hu C, Hu Y, et al. A versatile, ultralight, nitrogen-doped graphene framework[J].Angewandte Chemie International Edition,2012,51(45):11371.
81 Bi H, Xie X, Yin K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J].Advanced Functional Materials,2012,22(21):4421.
82 Wu R, Yu B, Liu X, et al. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents[J].Applied Surface Science,2016,362:56.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[4] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[5] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[6] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[7] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[8] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[9] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[10] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[11] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[12] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[13] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[14] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[15] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed