Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2584-2595    https://doi.org/10.11896/j.issn.1005-023X.2018.15.008
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
质子交换膜燃料电池双极板材料研究进展
李俊超, 王清, 蒋锐, 吴爱民, 林国强, 董闯
大连理工大学材料科学与工程学院,大连 116024
Research Progress of Bipolar Plate Material for Proton Exchange Membrane Fuel Cells
LI Junchao, WANG Qing, JIANG Rui, WU Aimin, LIN Guoqiang, DONG Chuang
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
下载:  全 文 ( PDF ) ( 1481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 燃料电池是把化学能直接连续转化为电能的高效、环保的发电系统,是继水电、火电和核电之后第四种发电装置。其中,质子交换膜燃料电池有着寿命长、比功率和比能量高、室温下启动速度快等优点,可作为移动式电源和固定式电源使用,且在军事、交通、通讯等领域有着广阔的应用前景,被认为是适应未来能源与环境要求的理想动力源之一。
双极板是质子交换膜燃料电池核心部件之一,占据了电池组很大一部分的质量和成本,且承担着均匀分配反应气体、传导电流、串联各单电池等功能。为了满足这些功能需要,理想的双极板应具有高的热/电导率、耐蚀性、低密度、良好的力学性能以及低成本、易加工等特点。但目前生产的双极板存在耐蚀性和导电性匹配性差、生产成本高和寿命短等问题。实现双极板材料的导电性和耐蚀性的合理匹配,即在保证导电性合理的前提下,实现高的耐蚀性,保障整个体系的服役寿命,是燃料电池商业化的关键环节之一。
目前广泛用作质子交换膜燃料电池双极板的基体材料主要有石墨材料、金属材料及复合材料三种。这三种材料制成的双极板有不同的优缺点,但综合而言均不能满足双极板的性能要求。针对以上问题,近几年来研究者利用掺杂或表面改性的方法,在弥补双极板材料的性能不足方面取得了较多的成果,很多改进后的材料已经可以满足美国能源部提出的性能要求。
本文系统总结了上述三类常见的双极板材料,详细综述了近年研究较为深入的金属双极板的涂层材料,并归纳了各种涂层与不锈钢、铝合金、钛合金基材组合的双极板的性能。文末展望了双极板特别是金属双极板材料的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李俊超
王清
蒋锐
吴爱民
林国强
董闯
关键词:  燃料电池  双极板材料  金属及合金  涂层  石墨  复合材料    
Abstract: Fuel cells, a kind of efficient and environmentally friendly power generation system which can continuously convert chemical energy into electricity directly, are the fourth power generation devices since hydropower, thermal power and nuclear power. Among them, proton exchange membrane fuel cells show prominent advantages of long life, high specific power and specific energy, fast start-up at room temperature, etc. They have displayed promising application potential in both portable power and immobile power with military, transportation and telecommunication uses, and are considered as one of the ideal power sources with high adaptability to future energy and environment situation.
The bipolar plate, which is one of the core components of a proton exchange membrane fuel cell, occupies a large part of the quality and cost of the whole battery pack and has the functions of uniformly distributing the reactant gas, conducting current, and concatenating monocells, etc. In order to realize these functions, a qualified bipolar plate should have the characteristics of high thermal conductivity, high electrical conductivity, corrosion resistance, low density, favorable mechanical properties, low cost, easy processing and so on. However, the contemporary bipolar plate products suffer poor matching between corrosion resistance and poor conductivity, also high production cost and short service life. Accordingly, it is crucial for commercial applications of fuel cells to achieve a reasonable matching of the conductivity and corrosion resistance of the bipolar plate materials, in other words, to ensure high corrosion and service life of the entire system resistance in the case of reasonable conductivity.
Currently, the commonly used substrate materials of proton exchange membrane fuel cell bipolar plates include graphite mate-rials, metal materials and composites, all of which have different advantages and disadvantages but are nonetheless unsatisfactory. This in recent years has urged intensive and fruitful research efforts to improve bipolar plates’ performance by means of material doping or surface modification, and a majority of modified materials have shown acceptable performance according to the criteria of the United States Department of Energy.
This paper systematically summarizes the above three types of bipolar plate materials, with an emphasis on the performances of the combinations of a diverse variety coating materials and substrates (including stainless steel, aluminum alloy, titanium alloy substrates). Finally, the development trend of bipolar plate materials, especially metallic bipolar plates are further discussed.
Key words:  fuel cell    bipolar plate material    metal and alloy    coating    graphite    composite
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TG178  
基金资助: 国家重点研发计划(2016YFB0101206);国家自然科学基金(11674045)
通讯作者:  王清:通信作者,女,1977年生,教授,博士研究生导师,研究方向为工程合金材料设计与新材料研发 E-mail:wangq@dlut.edu.cn   
作者简介:  李俊超:男,1994年生,硕士研究生,研究方向为耐蚀钛合金成分设计与优化 E-mail:2214300955@qq.com
引用本文:    
李俊超, 王清, 蒋锐, 吴爱民, 林国强, 董闯. 质子交换膜燃料电池双极板材料研究进展[J]. 材料导报, 2018, 32(15): 2584-2595.
LI Junchao, WANG Qing, JIANG Rui, WU Aimin, LIN Guoqiang, DONG Chuang. Research Progress of Bipolar Plate Material for Proton Exchange Membrane Fuel Cells. Materials Reports, 2018, 32(15): 2584-2595.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.008  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2584
1 Jeong G, Kim M, Han J, et al. High performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high temperature polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2016,323:142.
2 Dincer I. Technical, environmental and exergetic aspects of hydrogen energy systems[J].International Journal of Hydrogen Energy,2002,27:265.
3 Koryabkina N, Ribeiro F, Ruettinger W. Fuel cell technology: Opportunities and challenges[C]∥Proceedings of the AIChE Spring Meeting. New Orleans,2002:92.
4 Wang H, Turner J A. Reviewing metallic PEMFC bipolar plates[J].Fuel Cells,2010,10(4):510.
5 Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing[J].Journal of Power Sources,2003,114(1):32.
6 Kim J S, Peelen W H A, Hemmes K, et al. Effect of alloying elements on the contact resistance and the passivation behaviour of stainless steels[J].Corrosion Science,2002,44(4):635.
7 Davies D P, Adcock P L, Turpin M, et al. Bipolar plate materials for solid polymer fuel cells[J].Journal of Applied Electrochemistry,2000,30(1):101.
8 Wang H, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2003,115(2):243.
9 Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells[J].International journal of hydrogen Energy,2005,30(12):1297.
10 Iversen A K. Stainless steels in bipolar plates—Surface resistive properties of corrosion resistant steel grades during current loads[J].Corrosion Science,2006,48(5):1036.
11 Agneaux A, Plouzennec M H, Antoni L, et al. Corrosion behaviour of stainless steel plates in PEMFC working conditions[J].Fuel Cells,2006,6(1):47.
12 Hornung R, Kappelt G. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells[J].Journal of Power Sources,1998,72(1):20.
13 Silva R F, Franchi D, Leone A, et al. Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells[J].Electrochimica Acta,2006,51(17):3592.
14 Scholta J, Rohland B, Trapp V, et al. Investigations on novel low-cost graphite composite bipolar plates[J]. Journal of Power Sources,1999,84(2):231.
15 Aukland N, Boudina A, Eddy D S, et al. Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates[J].Journal of Materials Research,2004,19(6):1723.
16 Makkus R C, Janssen A H H, de Bruijn F A, et al. Use of stainless steel for cost competitive bipolar plates in the SPFC[J].Journal of Power Sources,2000,86(1-2):274.
17 Ren Y J, Zhang C R, Liu G M, et al. A review on corrosion and protection of metallic bipolar plates for proton exchange membrane fuel cell[J].Corrosion Science and Protection Technology,2009,21(4):388(in Chinese).
任延杰,张春荣,刘光明,等.质子交换膜燃料电池金属双极板的腐蚀与表面防护研究进展[J].腐蚀科学与防护技术,2009,21(4):388.
18 Zhang D, Duan L, Guo L, et al. Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2010,35(8):3721.
19 Dadfar M, Salehi M, Golozar M A, et al. Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates[J].International Journal of Hydrogen Energy,2016,41(46):21375.
20 Joseph S, McClure J, Chianelli R, et al. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2005,30:1339.
21 Mingge W, Congda L, Tao H, et al. Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell[J].Surface and Coatings Technology,2016,307:374.
22 Rajaei V, Rashtchi H, Raeissi K, et al. The study of Ni-based nano-crystalline and amorphous alloy coatings on AISI 304 stainless steel for PEM fuel cell bipolar plate application[J].International Journal of Hydrogen Energy,2017,42(20):14264.
23 Pozio A, Zaza F, Masci A, et al. Bipolar plate materials for PEMFCs: A conductivity and stability study[J].Journal of Power Sources,2008,179(2):631.
24 Wang J, Sun J, Li S, et al. Surface diffusion modification AISI 304SS stainless steel as bipolar plate material for proton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2012,37:1140.
25 Husby H. Carbon based coatings for metallic bipolar plates in PEM fuel cells[D].Norwegian:Institute for Materialteknologi,2013.
26 Wang L, Sun J, Kang B, et al. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate[J].Journal of Power Sources,2014,246:775.
27 Fukutsuka T, Yamaguchi T, Miyano S I, et al. Carbon-coated stainless steel as PEFC bipolar plate material[J].Journal of Power Sources,2007,174:199.
28 Lee S H, Kakati N, Maiti J, et al. Corrosion and electrical properties of CrN and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells[J].Thin Solid Films,2013,529:374.
29 Liu C, Bi Q, Leyland A, et al. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part Ⅱ. EIS interpretation of corrosion behavior[J].Corrosion Science,2003,45(6):1257.
30 Omrani M, Habibi M, Amrollahi R, et al. Improvement of corrosion and electrical conductivity of 316L stainless steel as bipolar plate by TiN nanoparticle implantation using plasma focus[J].Internatio-nal Journal of Hydrogen Energy,2012,37:14676.
31 Wang Z, Feng K, Li Z, et al. Self-passivating carbon film as bipolar plate protective coating in polymer electrolyte membrane fuel cell[J].International Journal of Hydrogen Energy,2016,41(13):5783.
32 Asri N F, Husaini T, Sulong A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC[J].International Journal of Hydrogen Energy,2017,42(14):9135.
33 Liu M, Xu H, Fu J, et al. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates[J].International Journal of Minerals, Metallurgy, and Materials,2016,23(7):844.
34 Wang S, Hou M, Zhao Q, et al. Ti/(Ti, Cr) N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells[J].Journal of Energy Chemistry,2017,26(1):168.
35 Bi F, Peng L, Yi P, et al. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells[J].Journal of Power Sources,2016,314:58.
36 Mani S P, Rajendran N. Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316LSS bipolar plates for proton exchange membrane fuel cells[J].Energy,2017,133:1050.
37 Mendizabal L, Oedegaard A, Kongstein O E, et al. TaNx coatings deposited by HPPMS on SS316L bipolar plates for polymer electrolyte membrane fuel cells: Correlation between corrosion current, contact resistance and barrier oxide film formation[J].International Journal of Hydrogen Energy,2017,42(5):3259.
38 Allahkaram S R, Allahkaram S R, Mohammadi N, et al. Corrosion behavior of two candidate PEMFC’s bipolar plate materials[J].Anti-Corrosion Methods and Materials,2017,64(3):293.
39 Lin K, Li X, Dong H, et al. Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2017,42(4):2338.
40 Mohammadi N, Yari M, Allahkaram S R. Characterization of PbO2 coating electrodeposited onto stainless steel 316L substrate for using as PEMFC’s bipolar plates[J].Surface and Coatings Technology,2013,236:341.
41 Yi P, Peng L, Zhou T, et al. Cr-N-C multilayer film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells using closed field unbalanced magnetron sputter ion plating[J].International Journal of Hydrogen Energy,2013,38:1535.
42 Zhao Y, Wei L, Yi P, et al. Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs[J].International Journal of Hydrogen Energy,2016,41:1142.
43 Lin K, Li X, Sun Y, et al. Active screen plasma nitriding of 316 stainless steel for the application of bipolar plates in proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2014,39:21470.
44 Wu B, Lin G, Fu Y, et al. Chromium-containing carbon film on stainless steel as bipolar plates for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2010,35(24):13255.
45 Fu Y, Lin G, Hou M, et al. Optimized Cr-nitride film on 316L stainless steel as proton exchange membrane fuel cell bipolar plate[J].International Journal of Hydrogen Energy,2009,34(1):453.
46 Fu Y, Lin G, Hou M, et al. Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2009,34(1):405.
47 Gago A, Ansar A, Wagner N, et al. Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers[C]∥4th European PEFC and H2 from 2—5 July 2013,Lucerne Switzerland,2013.
48 Turner J A, Wang H, Brady M P. Corrosion protection of metallic bipolar plates for fuel cells[J].National Renewable Energy Laboratory, Golden,2005:882.
49 Lee S H, Kim J H, Lee Y Y, et al. Effects of low temperature nitridation on the electrical conductivity and corrosion resistance of 446M stainless steel as bipolar plates for proton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2010,35:725.
50 Wang H, Turner J A. Electrochemical nitridation of a stainless steel for PEMFC bipolar plates[J].International Journal of Hydrogen Energy,2011,36:13008.
51 Mawdsley J R, Carter J D, Wang X, et al. Composite-coated aluminum bipolar plates for PEM fuel cells[J].Journal of Power Sources,2013,231:106.
52 Barranco J, Barreras F, Lozano A, et al. Influence of CrN coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates[J].Journal of Power Sources,2011,196(9):4283.
53 Tsai S Y, Lin C H, Jian Y J, et al. The fabrication and characteristics of electroless nickel and immersion Au-polytetrafluoroethylene composite coating on aluminum alloy 5052 as bipolar plate[J].Surface and Coatings Technology,2017,313:151.
54 Hou K H, Lin C H, Ger M D, et al. Analysis of the corrosion behavior of Al alloy bipolar plate for proton exchange membrane fuel cell under operating thermal conditions[J].Green Energy,2012,9:71.
55 Lin C H, Tsai S Y. An investigation of coated aluminium bipolar plates for polymer electrolyte membrane fuel cells[J].Applied Energy,2012,100:87.
56 Tsai S Y, Bai C Y, Lin C H, et al. The characteristics and perfor-mance of electroless nickel and immersion Au plated aluminum alloy bipolar plates in polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2012,214:51.
57 Li Z, Feng K, Wang Z, et al. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell[J].International Journal of Hydrogen Energy,2014,39(16):8421.
58 Chen P, Fang F, Zhang Z, et al. Self-assembled graphene film to enable highly conductive and corrosion resistant aluminum bipolar plates in fuel cells[J].International Journal of Hydrogen Energy,2017,42(17):12593.
59 Jin C K, Kang C G. Fabrication by vacuum die casting and simulation of aluminum bipolar plates with micro-channels on both sides for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2012,37(2):1661.
60 Fetohi A E, Abdel Hameed R M, El-Khatib K M, et al. Ni-P and Ni-Co-P coated 5251 substrates as metallic bipolar plates for PEM fuel cell applications[J].International Journal of Hydrogen Energy,2012,37(9):7677.
61 Abo El-Enin S A, Abdel-Salam O E, El-Abd H, et al. New electroplated aluminum bipolar plate for PEM fuel cell[J].Journal of Power Sources,2008,177(1):131.
62 Lee C H, Lee Y B, Kim K M, et al. Electrically conductive polymer composite coating on aluminum for PEM fuel cells bipolar plate[J].Renewable Energy,2013,54:46.
63 Fetohi A E, Hameed R M A, El-Khatib K M, et al. Study of diffe-rent aluminum alloy substrates coated with Ni-Co-P as metallic bipolar plates for PEM fuel cell applications[J].International Journal of Hydrogen Energy,2012,37(14):10807.
64 Zhang D, Duan L, Guo L, et al. TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating[J].International Journal of Hydrogen Energy,2011,36:9155.
65 Qian Y, Xu J. Properties of ZrC nanocrystalline coating on Ti alloy bipolar plates in simulated PEMFC environments[J].Rare Metal Materials and Engineering, 2017,46(4):1033(in Chinese).
钱阳,徐江.模拟PEMFC环境下纳米晶ZrC涂层钛合金双极板的性能研究[J].稀有金属材料与工程,2017,46(4):1033.
66 Qian Y, Xu J. Properties of Zr nanocrystalline coating on Ti alloy bipolar plates in simulated PEMFC environments[J].Acta Physico-Chimica Sinica,2015,31(2):291(in Chinese).
钱阳,徐江.钛合金双极板表面纳米晶Zr涂层在质子交换膜燃料电池环境中的性能[J].物理化学学报,2015,31(2):291.
67 Xu J, Huang H J, Li Z Y, et al. Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell[J].Journal of Alloys and Compounds,2016,663:718.
68 Wang S H, Peng J, Liu W B, et al. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells[J].Journal of Power Sources,2006,162:486.
69 Wu B. Study on films by arc ion plating on stainless steel bipolar plates for proton exchange membrane fuel cell[D].Dalian: Dalian University of Technology,2011(in Chinese).
吴博.质子交换膜燃料电池不锈钢双极板电弧离子镀膜改性研究[D].大连:大连理工大学,2011.
70 Hou M, Wu J F, Yi B L, et al. Flow-field plates in proton exchange membrane fuel cell[J].Chinese Journal of Power Sources,2001(4):294(in Chinese).
侯明,吴金锋,衣宝廉,等.PEM燃料电池流场板[J].电源技术,2001(4):294.
71 Tripathi B P, Shahi V K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications[J].Progress in Polymer Science,2011,36(7):945.
72 Joo L A, Tucker K W, Shaner J R. Process for the production of a porous monolithic graphite plate: US,4782586[P].1988-11-08.
73 Wang M H, Cao G Y, Zhu X J, et al. New method of impregnating graphite bipolar plates used in fuel cell[J]. Chinese Journal of Power Sources,2003,27(6):492(in Chinese).
王明华,曹广益,朱新坚,等.一种浸渍燃料电池用石墨双极板的新方法[J].电源技术,2003,27(6):492.
74 Emanuelson R C, Luoma W L, Taylor W A. Separator plate for electrochemical cells: US, 4301222[P].1981-11-17.
75 Ji S, Hwang Y S, Park T, et al. Graphite foil based assembled bipolar plates for polymer electrolyte fuel cells[J].International Journal of Precision Engineering and Manufacturing,2012,13(12):2183.
76 Lawrance R J. Low cost bipolar current collector-separator for electrochemical cells: US,4214969[P].1980-07-29.
77 Wilson M S, Busick D N. Composite bipolar plate for electrochemical cells: US,6248467[P].2001-06-19.
78 Bisaria M K, Andrin P, Abdou M, et al. Injection moldable conductive aromatic thermoplastic liquid crystalline polymeric compositions: US,6379795[P].2002-04-30.
79 Pellegri A, Spaziante P M. Bipolar separator for electrochemical cells and method of preparation thereof: US,4197178[P].1980-04-08.
80 Blunk R, Elhamid M H A, Lisi D, et al. Polymeric composite bipolar plates for vehicle applications[J].Journal of Power Sources,2006,156(2):151.
81 Yin Q, Li A J, Shao L, et al. Properties of carbon fiber reinforced phenol formaldehyde resin/graphite conductive composite bipolar plate[J].Modern Chemical Industry,2007(1):46(in Chinese).
阴强,李爱菊,邵磊,等.碳纤维增强酚醛树脂/石墨双极板复合材料性能及其界面结合[J].现代化工,2007(1):46.
82 Zhang S Y. Preparation and properties of novel graphite-based composite bipolar plates[D].Shanghai: Huadong University of Techno-logy,2011(in Chinese).
张世渊.新型石墨基复合材料双极板的制备[D].上海:华东理工大学,2011.
83 黄明宇.中间相碳微球/石墨材料燃料电池双极板的研究[C]∥中国可再生能源学会氢能专业委员会.第七届全国氢能学术会议论文集.中国可再生能源学会氢能专业委员会,2006:5.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[5] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[6] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[7] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[8] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[9] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[10] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[13] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[14] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[15] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed