Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 662-671    https://doi.org/10.11896/j.issn.1005-023X.2018.04.031
  计算模拟 |
应用低钛高炉渣的半钢炼钢:脱磷热力学与工业试验
王宝华1, 2, 朱荣1, 黄世平3, 宫永煜2, 王世钊2, 张明博1, 2
1 北京科技大学冶金与生态工程学院, 北京 100083;
2 河钢股份有限公司承德分公司, 承德 067102;
3 河钢集团钢研总院,石家庄 050023
Applying Low Titanium Blast Furnace Slag to Semi-steel Steelmaking: Dephosphorization Thermodynamics and Industrial Experiment
WANG Baohua1, 2, ZHU Rong1, HUANG Shiping3, GONG Yongyu2, WANG Shizhao2, ZHANG Mingbo1, 2
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083;
2 HBIS Company Limited Chengde Branch, Chengde 067102;
3 Hesteel Group Central Iron and Steel Research Institute, Shijiazhuang 050023
下载:  全 文 ( PDF ) ( 2041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于低钛高炉渣资源化综合利用和提高转炉半钢炼钢脱磷效果的考虑,对低钛高炉渣进行喷吹CO2法脱硫处理后,配入25%~30%的氧化铁皮制备成半钢化渣球用于半钢炼钢。采用建立半钢渣系的脱磷热力学模型和工业试验的方法,对此半钢化渣球冶炼半钢的脱磷能力和冶金效果进行研究。研究结果表明:随着炉渣中TiO2和Al2O3含量的升高,炉渣的脱磷能力降低,特别是当炉渣碱度和温度较低时,脱磷能力降低更快;在两种氧化物含量相同的情况下,TiO2比Al2O3的负面影响更大;随炉渣碱度的增加,炉渣的磷分配比和磷容量均呈先升高后持平的趋势;随渣中w(FeO)的增加,炉渣的磷分配比和磷容量均先升高后降低;随w(MgO)的降低,炉渣的磷分配比和磷容量逐渐降低。采用半钢化渣球冶炼半钢,渣中w(TiO2+Al2O3)和w(FeO)升高,炉渣碱度和w(MgO)降低,控制炉渣碱度在4.0左右,炉渣不仅具有较高的磷分配比和磷容量,并且可以弱化(TiO2+Al2O3)对脱磷能力的影响,确定其加入比例为总渣量的15.0%~20.0%。留渣+化渣球法冶炼半钢的前期平均脱磷率增至58.59%,为原冶炼工艺的1.57倍,吨钢石灰消耗和终点钢水[O]含量分别下降3.48 kg/t和112×10-6
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宝华
朱荣
黄世平
宫永煜
王世钊
张明博
关键词:  低钛高炉渣  转炉炼钢  半钢渣系  共存理论  脱磷    
Abstract: In order to comprehensively utilize low-titanium slag and improve the dephosphorization rate of semi-steel steelma-king, the semi-steel slag ball made of low-titanium slag with injecting CO2 desulfurization treatment and 25%—30% of the oxide scale was used for semi-steel melting. The dephosphorization thermodynamic model of semi-steel slag system and the method of industrial test were established and conducted to study the dephosphorization and metallurgical impact of semi-steel slag ball. The results indicated that the dephosphorizing capacity would be reduced with increasing w(TiO2) and w(Al2O3), especially under the low temperature and low alkalinity conditions. Compared with Al2O3, the TiO2 can reduce the dephosphorization of slag more. The lgLp and lgCp increased first and then almost invariant with increasing alkalinity, increased first and then decreased as w(FeO) increase, and decreased with the w(MgO) increase. When the semi-tempered slag ball was used in semi-steel steelmaking, the w(TiO2+Al2O3) and w(FeO) of slag increased and the basicity and MgO decreased. The optimum condition for semi-steel smelting is that the basicity of slag is about 4.0 and the proportion of semi-tempered slag ball is 15.0%—20.0 % of total slag, and this will result in relatively high lgLp and lgCp of slag, as well as relatively low adverse influence of w(TiO2+Al2O3) on lgLp and lgCp. The early stage dephosphorization rate can be increased to 58.59%, which is 1.57 times of that of the original smelting process. Besides, the per ton lime consumption and the [O] in final steel decrease by 3.48 kg·t -1and 112×10-6, respectively.
Key words:  low titanium blast furnace slag    BOF steel making    semi-steel slag    coexistence theory    dephosphorization
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TF711  
基金资助: 国家自然科学基金重点资助项目(51334001)
通讯作者:  张明博:男,1984年生,博士,主要从事固体废弃物资源综合利用及炼钢工艺研究 E-mail:zhangmingbo45@163.com   
作者简介:  王宝华:男,1973年生,博士研究生,高级工程师,主要从事炼钢及连铸工艺研究 E-mail:13803146375@163.com
引用本文:    
王宝华, 朱荣, 黄世平, 宫永煜, 王世钊, 张明博. 应用低钛高炉渣的半钢炼钢:脱磷热力学与工业试验[J]. 《材料导报》期刊社, 2018, 32(4): 662-671.
WANG Baohua, ZHU Rong, HUANG Shiping, GONG Yongyu, WANG Shizhao, ZHANG Mingbo. Applying Low Titanium Blast Furnace Slag to Semi-steel Steelmaking: Dephosphorization Thermodynamics and Industrial Experiment. Materials Reports, 2018, 32(4): 662-671.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.031  或          http://www.mater-rep.com/CN/Y2018/V32/I4/662
1 Liu X H, Gai G S, Yang Y F, et al. Kinetics of the leaching of TiO from Ti-bearing blast furnace slag[J].Journal of China University of Mining & Technology,2008,18(2):276.
2 Fu N X, Zhang L, Cao H Y,et al. Effects of additives on precipita-tion behavior of perovskite in Ti-bearing blast furnace slag[J].Journal of Iron and Steel Research,2008,20(4):13(in Chinese).
付念新,张力,曹洪杨,等.添加剂对含钛高炉渣中钙钛矿相析出行为的影响[J].钢铁研究学报,2008,20(4):13.
3 Han Z H, Zhao H Q. Progress in applied research of the heterogeneous photocatalysis on semiconductors[J].Progress in Chemistry,1992,11(1):1(in Chinese).
韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1992,11(1):1.
4 Bellmann F, Stark J. Activation of blast furnace slag by a new method[J].Cement and Concrete Research,2009,39(8):644.
5 Lu Z X. Photocatalytic degradation of nitrobenzene wastewater with titania-containing slag[D].Shenyang:Northeastern University,2010(in Chinese).
卢正希.含钛矿物光催化降解硝基苯废水[D].沈阳:东北大学,2010.
6 Wang W. Experimental study on preparation of ceramic by titania-bearing blast slag and its exploratory research on antibacterial performance[D].Shenyang:Northeastern University,2010(in Chinese).
王微.利用含钛高炉渣制备陶瓷的试验研究及其抗菌性的探讨[D].沈阳:东北大学,2010.
7 Zhang Y, Yang H, Wang L, et al. Synthesis of fertilizer from tita-nium-bearing blast furnace slag[J].Journal of Northeastern University(Natural Science),2010,31(8):1161(in Chinese).
张悦,杨合,王丽,等.用含钛高炉渣制备肥料[J].东北大学学报(自然科学版),2010,31(8):1161.
8 Zhang Y, Yang H, Xue X X, et al. Study on compound fertilizer from titanium-bearing blast furnace slag and its use in soybean cultivation[J].Chinese Journal of Rare Metals,2010,34(4):601(in Chinese).
张悦,杨合,薛向欣,等.含钛高炉渣合成复合肥料及大豆栽培实验研究[J].稀有金属,2010,34(4):601.
9 Hou S X, Ke C M, Li Y Q, et al. Preparation alloy and residue from titanium-bearing blast furnace slag of metal thermic reduction[J].Ferro-alloys,2007,196(5):20(in Chinese).
侯世喜,柯昌明,李有奇,等.金属热还原含钛高炉渣制取合金及残渣的研究[J].铁合金,2007,196(5):20.
10 Zhang M B. Study on resource utilization of low Ti-bea-ring blast furnace slag[D].Beijing:University of Science and Technology Beijing,2017(in Chinese).
张明博.低钛高炉渣资源化利用[D].北京:北京科技大学,2017.
11 黄希祜.钢铁冶金原理(第三版)[M].北京:冶金工业出版社,2004.
12 Lin L, Bao Y P, Wang M, et al. Phosphorus behavior in CaO-SiO2-FeO slag during converter melting process[J].Journal of University of Science and Technology Beijing,2013,35(6):720(in Chinese).
林路,包艳平,王敏,等.转炉冶炼BaO-SiO2-FeO渣系中磷的行为[J].北京科技大学学报,2013,35(6):720.
13 Li P C, Yang X M, Zhang J. Thermodynamic model of the phosphorus distribution ratio of CaO-MgO-FeO-Fe2O3-SiO2 steelmaking slags[J].Journal of University of Science and Technology Beijing,2014,36(12):1608(in Chinese).
李鹏程,杨学民,张鉴.CaO-MgO-FeO-Fe2O3-SiO2炼钢渣系磷分配比的热力学模型[J].北京科技大学学报,2014,36(12):1608.
14 Ban-ya S.Mathematical expression of slag-metal reaction in steelma-king process by quadratic formalism based on the regular solution model[J].ISIJ International,1993,33(1):2.
15 Li F W. Research on slag compositions and inclusions of GCr15 bea-ring steel during steelmaking process[D].Beijing:University of Science and Technology Beijing,2014(in Chinese).
李风伟.GCr15轴承钢冶炼过程炉渣成分及夹杂物研究[D].北京:北京科技大学,2014.
16 Ban-ya S,Hino M,Stao A, et al. O, P and S distribution equilibria between iron and CaO-Al2O3-FetO slag saturated with CaO[J].Tetsu-to-Hagane,1991,77:361.
17 Wagner C.The concept of the basicity of slags[J].Metallurgical and Materials Transactions B,1975,6(3):405.
18 Young R W,Duffy J A,Hassall G J, et al.Use of the optical basicity concept for determining phosphorus and sulphur slag/metal partitions[J].Ironmaking and Steelmaking,1992,19(3):201.
19 Yang X M,Liu T Z,Guo Z C,et al.Study on the correlation between phosphate capacity index and slag basicity[J].Chinese Journal of Process Engineering,1995,16(3):194.
20 Yang X M,Guo Z C,Wang D G,et al.Investigation on the correlation between sulfide capacity and phosphate capacity of metallurgical slag[J].Iron and Steel,1996,31(Suppl 1):25.
21 Yang X M,Shi C B,Zhang M,et al.A thermodynamic model of phosphate capacity for CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags equilibrated with molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory[J].Metallurgical and Materials Transactions B,2011,42(5):951.
22 李晋岩,张盟,柴国明,等.CaO-FeO-Fe2O3-Al2O3-P2O5炉渣的磷酸盐容量预测模型[C]//第十七届全国冶金反应工程学学术会议论文集(下册).太原,2013.
23 张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007.
24 王新华.钢铁冶金学—炼钢学[M].北京:高等教育出版社,2007.
25 Farshid P,Shin-ya K, Hiroyuki S,et al.Distribution of P2O5 between solid solution of 2CaO?SiO2-3CaO?P2O5 and liquid phase[J].ISIJ International,2010,50(6):822.
26 Diao J. Effect of Al2O3 and Na2O on dephosphorization of high phosphorus hot metal[J].Journal of Iron and Steel Research,2013,25(2):9(in Chinese).
刁江.Al2O3和Na2O对高磷铁水脱磷的影响[J].钢铁研究学报,2013,25(2):9.
27 Deo B,Halder J,Snoeijer B,et al.Effect of MgO and Al2O3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution[J].Ironmaking and Steelmaking,2005,32(1):54.
28 Lin L, Bao Y P, Wang M, et al. Influence of titania modification on phosphorus enrichment in P-bearing steel-making slag[J].Journal of University of Science and Technology Beijing,2014,36(8):1013(in Chinese).
林路,包艳平,王敏,等.二氧化钛改质对含磷转炉渣中磷富集行为的影响[J].北京科技大学学报,2014,36(8):1013.
29 Li X P, Gao J T, Zhang Y L, et al. Distribution behavior of phosphorus between CaO-FeO-SiO2-Al2O3 /Na2O/TiO2 slags and carbon-saturated iron [J].Iron and Steel,2017,52(2):18(in Chinese).
李显鹏,高金涛,张延玲,等.CaO-FeO-SiO2-Al2O3/Na2O/TiO2渣系与碳饱和铁水间磷分配行为[J].钢铁,2017,52(2):18.
30 Zhang S H. Study on thermodynamics poroperty of CaO-SiO2-Al2O3-MgO-FeO slags[D].Tangshan:Hebei Polytechnic University,2003(in Chinese).
张淑会.CaO-SiO2-Al2O3-MgO-FeO五元渣系热力学性能的研究[D].唐山:河北理工大学,2003.
31 Lee C M,Fruehan R J.Phosphorus equilibrium between hot metal and slag[J].Ironmaking and Steelmaking,2013,32(6):503.32 Li C, Sun H, Bai J, et al. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J].Journal of Hazardous Materials,2010,174(1):71.
33 Blackman L. On the formation of Fe2+ in the system MgO-Fe2O3-MgFe2O4 at high temperatures[J].Journal of the American Cera-mic Society,1959,42(3):143.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed