Applying Low Titanium Blast Furnace Slag to Semi-steel Steelmaking: Dephosphorization Thermodynamics and Industrial Experiment
WANG Baohua1, 2, ZHU Rong1, HUANG Shiping3, GONG Yongyu2, WANG Shizhao2, ZHANG Mingbo1, 2
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083; 2 HBIS Company Limited Chengde Branch, Chengde 067102; 3 Hesteel Group Central Iron and Steel Research Institute, Shijiazhuang 050023
Abstract: In order to comprehensively utilize low-titanium slag and improve the dephosphorization rate of semi-steel steelma-king, the semi-steel slag ball made of low-titanium slag with injecting CO2 desulfurization treatment and 25%—30% of the oxide scale was used for semi-steel melting. The dephosphorization thermodynamic model of semi-steel slag system and the method of industrial test were established and conducted to study the dephosphorization and metallurgical impact of semi-steel slag ball. The results indicated that the dephosphorizing capacity would be reduced with increasing w(TiO2) and w(Al2O3), especially under the low temperature and low alkalinity conditions. Compared with Al2O3, the TiO2 can reduce the dephosphorization of slag more. The lgLp and lgCp increased first and then almost invariant with increasing alkalinity, increased first and then decreased as w(FeO) increase, and decreased with the w(MgO) increase. When the semi-tempered slag ball was used in semi-steel steelmaking, the w(TiO2+Al2O3) and w(FeO) of slag increased and the basicity and MgO decreased. The optimum condition for semi-steel smelting is that the basicity of slag is about 4.0 and the proportion of semi-tempered slag ball is 15.0%—20.0 % of total slag, and this will result in relatively high lgLp and lgCp of slag, as well as relatively low adverse influence of w(TiO2+Al2O3) on lgLp and lgCp. The early stage dephosphorization rate can be increased to 58.59%, which is 1.57 times of that of the original smelting process. Besides, the per ton lime consumption and the [O] in final steel decrease by 3.48 kg·t -1and 112×10-6, respectively.
1 Liu X H, Gai G S, Yang Y F, et al. Kinetics of the leaching of TiO from Ti-bearing blast furnace slag[J].Journal of China University of Mining & Technology,2008,18(2):276. 2 Fu N X, Zhang L, Cao H Y,et al. Effects of additives on precipita-tion behavior of perovskite in Ti-bearing blast furnace slag[J].Journal of Iron and Steel Research,2008,20(4):13(in Chinese). 付念新,张力,曹洪杨,等.添加剂对含钛高炉渣中钙钛矿相析出行为的影响[J].钢铁研究学报,2008,20(4):13. 3 Han Z H, Zhao H Q. Progress in applied research of the heterogeneous photocatalysis on semiconductors[J].Progress in Chemistry,1992,11(1):1(in Chinese). 韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1992,11(1):1. 4 Bellmann F, Stark J. Activation of blast furnace slag by a new method[J].Cement and Concrete Research,2009,39(8):644. 5 Lu Z X. Photocatalytic degradation of nitrobenzene wastewater with titania-containing slag[D].Shenyang:Northeastern University,2010(in Chinese). 卢正希.含钛矿物光催化降解硝基苯废水[D].沈阳:东北大学,2010. 6 Wang W. Experimental study on preparation of ceramic by titania-bearing blast slag and its exploratory research on antibacterial performance[D].Shenyang:Northeastern University,2010(in Chinese). 王微.利用含钛高炉渣制备陶瓷的试验研究及其抗菌性的探讨[D].沈阳:东北大学,2010. 7 Zhang Y, Yang H, Wang L, et al. Synthesis of fertilizer from tita-nium-bearing blast furnace slag[J].Journal of Northeastern University(Natural Science),2010,31(8):1161(in Chinese). 张悦,杨合,王丽,等.用含钛高炉渣制备肥料[J].东北大学学报(自然科学版),2010,31(8):1161. 8 Zhang Y, Yang H, Xue X X, et al. Study on compound fertilizer from titanium-bearing blast furnace slag and its use in soybean cultivation[J].Chinese Journal of Rare Metals,2010,34(4):601(in Chinese). 张悦,杨合,薛向欣,等.含钛高炉渣合成复合肥料及大豆栽培实验研究[J].稀有金属,2010,34(4):601. 9 Hou S X, Ke C M, Li Y Q, et al. Preparation alloy and residue from titanium-bearing blast furnace slag of metal thermic reduction[J].Ferro-alloys,2007,196(5):20(in Chinese). 侯世喜,柯昌明,李有奇,等.金属热还原含钛高炉渣制取合金及残渣的研究[J].铁合金,2007,196(5):20. 10 Zhang M B. Study on resource utilization of low Ti-bea-ring blast furnace slag[D].Beijing:University of Science and Technology Beijing,2017(in Chinese). 张明博.低钛高炉渣资源化利用[D].北京:北京科技大学,2017. 11 黄希祜.钢铁冶金原理(第三版)[M].北京:冶金工业出版社,2004. 12 Lin L, Bao Y P, Wang M, et al. Phosphorus behavior in CaO-SiO2-FeO slag during converter melting process[J].Journal of University of Science and Technology Beijing,2013,35(6):720(in Chinese). 林路,包艳平,王敏,等.转炉冶炼BaO-SiO2-FeO渣系中磷的行为[J].北京科技大学学报,2013,35(6):720. 13 Li P C, Yang X M, Zhang J. Thermodynamic model of the phosphorus distribution ratio of CaO-MgO-FeO-Fe2O3-SiO2 steelmaking slags[J].Journal of University of Science and Technology Beijing,2014,36(12):1608(in Chinese). 李鹏程,杨学民,张鉴.CaO-MgO-FeO-Fe2O3-SiO2炼钢渣系磷分配比的热力学模型[J].北京科技大学学报,2014,36(12):1608. 14 Ban-ya S.Mathematical expression of slag-metal reaction in steelma-king process by quadratic formalism based on the regular solution model[J].ISIJ International,1993,33(1):2. 15 Li F W. Research on slag compositions and inclusions of GCr15 bea-ring steel during steelmaking process[D].Beijing:University of Science and Technology Beijing,2014(in Chinese). 李风伟.GCr15轴承钢冶炼过程炉渣成分及夹杂物研究[D].北京:北京科技大学,2014. 16 Ban-ya S,Hino M,Stao A, et al. O, P and S distribution equilibria between iron and CaO-Al2O3-FetO slag saturated with CaO[J].Tetsu-to-Hagane,1991,77:361. 17 Wagner C.The concept of the basicity of slags[J].Metallurgical and Materials Transactions B,1975,6(3):405. 18 Young R W,Duffy J A,Hassall G J, et al.Use of the optical basicity concept for determining phosphorus and sulphur slag/metal partitions[J].Ironmaking and Steelmaking,1992,19(3):201. 19 Yang X M,Liu T Z,Guo Z C,et al.Study on the correlation between phosphate capacity index and slag basicity[J].Chinese Journal of Process Engineering,1995,16(3):194. 20 Yang X M,Guo Z C,Wang D G,et al.Investigation on the correlation between sulfide capacity and phosphate capacity of metallurgical slag[J].Iron and Steel,1996,31(Suppl 1):25. 21 Yang X M,Shi C B,Zhang M,et al.A thermodynamic model of phosphate capacity for CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags equilibrated with molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory[J].Metallurgical and Materials Transactions B,2011,42(5):951. 22 李晋岩,张盟,柴国明,等.CaO-FeO-Fe2O3-Al2O3-P2O5炉渣的磷酸盐容量预测模型[C]//第十七届全国冶金反应工程学学术会议论文集(下册).太原,2013. 23 张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007. 24 王新华.钢铁冶金学—炼钢学[M].北京:高等教育出版社,2007. 25 Farshid P,Shin-ya K, Hiroyuki S,et al.Distribution of P2O5 between solid solution of 2CaO?SiO2-3CaO?P2O5 and liquid phase[J].ISIJ International,2010,50(6):822. 26 Diao J. Effect of Al2O3 and Na2O on dephosphorization of high phosphorus hot metal[J].Journal of Iron and Steel Research,2013,25(2):9(in Chinese). 刁江.Al2O3和Na2O对高磷铁水脱磷的影响[J].钢铁研究学报,2013,25(2):9. 27 Deo B,Halder J,Snoeijer B,et al.Effect of MgO and Al2O3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution[J].Ironmaking and Steelmaking,2005,32(1):54. 28 Lin L, Bao Y P, Wang M, et al. Influence of titania modification on phosphorus enrichment in P-bearing steel-making slag[J].Journal of University of Science and Technology Beijing,2014,36(8):1013(in Chinese). 林路,包艳平,王敏,等.二氧化钛改质对含磷转炉渣中磷富集行为的影响[J].北京科技大学学报,2014,36(8):1013. 29 Li X P, Gao J T, Zhang Y L, et al. Distribution behavior of phosphorus between CaO-FeO-SiO2-Al2O3 /Na2O/TiO2 slags and carbon-saturated iron [J].Iron and Steel,2017,52(2):18(in Chinese). 李显鹏,高金涛,张延玲,等.CaO-FeO-SiO2-Al2O3/Na2O/TiO2渣系与碳饱和铁水间磷分配行为[J].钢铁,2017,52(2):18. 30 Zhang S H. Study on thermodynamics poroperty of CaO-SiO2-Al2O3-MgO-FeO slags[D].Tangshan:Hebei Polytechnic University,2003(in Chinese). 张淑会.CaO-SiO2-Al2O3-MgO-FeO五元渣系热力学性能的研究[D].唐山:河北理工大学,2003. 31 Lee C M,Fruehan R J.Phosphorus equilibrium between hot metal and slag[J].Ironmaking and Steelmaking,2013,32(6):503.32 Li C, Sun H, Bai J, et al. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J].Journal of Hazardous Materials,2010,174(1):71. 33 Blackman L. On the formation of Fe2+ in the system MgO-Fe2O3-MgFe2O4 at high temperatures[J].Journal of the American Cera-mic Society,1959,42(3):143.