Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 130-135    https://doi.org/10.11896/j.issn.1005-023X.2017.06.026
  材料研究 |
天然浮石混凝土孔溶液结冰规律的研究
王萧萧1, 申向东2, 王海龙2, 杜聪1
1 内蒙古工业大学土木工程学院, 呼和浩特 010051;
2 内蒙古农业大学水利与土木建筑工程学院, 呼和浩特 010018
Research on Icing Law of Pore Solution in Natural Pumice Concrete
WANG Xiaoxiao1, SHEN Xiangdong2, WANG Hailong2, DU Cong1
1 College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051;
2 College of Water
Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018
下载:  全 文 ( PDF ) ( 1471KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以内蒙古天然浮石作为粗骨料,通过冻融核磁共振技术模拟冻融循环温度变化过程,并测得天然浮石混凝土在冷冻和融化过程中孔溶液信号量、结冰速率、T2谱和孔径分布的变化规律,结果表明:用冷冻过程中的含冰量来评价孔溶液结冰引起的静水压比较符合实际情况;天然浮石混凝土发生冻害的温度主要是-15 ℃以上。探讨了天然浮石混凝土孔溶液的结冰规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王萧萧
申向东
王海龙
杜聪
关键词:  天然浮石混凝土  冻融核磁共振  孔隙结冰规律    
Abstract: The freezing and thawing temperature cycle of coarse aggregate, which was made from the natural pumice in Inner Mongolia, was simulated by freezing-thawing nuclear magnetic resonance technology. During the freezing and thawing process, the various discipline of pore solution semaphore, frozen rate, T2 spectrum and pore size distribution were obtained. The results showed that it was reasonable to evaluate the hydrostatic pressure of pore solution with the amount of ice in freezing process. The most se-rious damage of natural pumice concrete occurred at minus 15 centigrade. Other freezing behaviors of the natural pumice concrete solution were also obtained.
Key words:  natural pumice concrete    freezing-thawing nuclear magnetic resonance    pore icing law
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51609119;51569021;51369023;51669026);内蒙古自治区自然科学基金(2015MS0564;2016BS0503);教育部创新团队发展计划(IRT13069);内蒙古工业大学科学研究项目(ZD201609)
通讯作者:  申向东:男,1955年生,教授,博士研究生导师,主要研究方向为新型建筑材料,E-mail:ndsxd@163.com   
作者简介:  王萧萧:女,1987年生,博士,讲师,主要研究方向为混凝土耐久性,E-mail:wxiaoxiao.good@163.com
引用本文:    
王萧萧, 申向东, 王海龙, 杜聪. 天然浮石混凝土孔溶液结冰规律的研究[J]. 《材料导报》期刊社, 2017, 31(6): 130-135.
WANG Xiaoxiao, SHEN Xiangdong, WANG Hailong, DU Cong. Research on Icing Law of Pore Solution in Natural Pumice Concrete. Materials Reports, 2017, 31(6): 130-135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.026  或          http://www.mater-rep.com/CN/Y2017/V31/I6/130
1 Hossain K M A. Potential use of volcanic pumice as a construction material [J]. J Mater Civil Eng,2004,16(6):573.
2 Hossain K M A. Properties of volcanic scoria based lightweight concrete[J]. Mag Concr Res,2004,56(2):111.
3 Mrema A, Mboya H. Feasibility of lightweight aggregate concrete for structural and non-structural works in Tanzania[C]//Reserarch and Applications in Structural Engineering, Mechanics and Computation- Zingoni (Ed). Cape Town,2013:1769.
4 Yasar E, Atis C D, Kilic A, et al. Strength properties of lightweight concrete made with basaltic volcanic pumice and fly ash[J]. Mater Lett,2003,57(15):2267.
5 Hossain K M A. Properties of volcanic pumice based cement and lightweight concrete[J]. Cem Concr Res,2004,34(2):283.
6 Hossain K M A. Fire durability of lightweight volcanic pumice concrete with special reference to thin walled filled sections [J]. Durability Build Mater Components,1999,8(1-4):149.
7 Kuznetsova E, Motenko R G, Danielsen S W. Thermal properties of volcanic ash and pumice [C]//Mineral Deposit Research for a High Tech World 12th Biennial Meeting.Uppsala,2013:155.
8 Onouea K, Tamaib H, Susenoc H. Shock-absorbing capability of lightweight concrete utilizing volcanic pumice aggregate [J]. Constr Build Mater,2015,83:261.
9 Hariyadia H, Tamaib H. Enhancing the performance of porous concrete by utilizing the pumice aggregate[J]. Procedia Eng,2015,125:732.
10 Neville A M. Properties of concrete [M]. England: Longman Group Limited,1995:29.
11 Uygunolu T, Topu L B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature[J].Constr Build Mater,2009,23(9):3063.
12 Wen Jiabao. Study on freeze-thaw damage for concrete based on analysis of the pore structure[D]. Harbin: Harbin Engineering University,2013(in Chinese).
温家宝.基于孔结构分析的混凝土冻融损伤研究[D].哈尔滨:哈尔滨工程大学,2013.
13 Yu L, Zhang J, Zhang J X, et al.Quantitative relation model between macro performance and pore structure of cement concrete[J].J Harbin Engineering University,2015,36(11):1459(in Chinese).
于蕾,张君,张金喜,等.水泥混凝土宏观性能与孔结构量化关系模型[J].哈尔滨工程大学学报,2015,36(11):1459.
14 廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996:58.
15 Powers T C. The specific surface area of hydrated cement obtained from permeability data[J]. Matériaux et Constr,1979,12(3):159.
16 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999:36.
17 Cai H. Prediction model of frost resistance and durability of concrete [D].Beijing: Tsinghua University,1998(in Chinese).
蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998.
18 张誉,蒋利学,张伟平,等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003:92.
19 Zhang S P, Deng M, Wu J H, et al.Effect of pore structure on the frost resistance of concrete[J].J Wuhan University of Technology,2008,30(6):56(in Chinese).
张士萍,邓敏,吴建华,等.孔结构对混凝土抗冻性的影响[J].武汉理工大学学院,2008,30(6):56.
20 Fagerlund G. Determination of pore-size distribution from freezing-point depression[J].Matériaux et Constr,1973,6(33):215.
21 Powers T C. Studies of the physical properties of hardende portland cement past[J]. J Am Ceram Soc,1958,41(1):1.
22 Jacobsen S, Sellevold E J, Matala S. Frost durability of high strength concrete: Effect of internal cracking on ice formation[J]. Cem Concr Res,1996,26(6):919.
23 Monteiro P J M, Rashed A I. Ice in cement paste as analyzed in the low-temperature scanning electron microscope[J]. Cem Concr Res,1989,19:306.
24 Wang K, Monteiro P J M, Rubinsky B, et al. Microscopic study of ice propagation in concrete[J]. ACI Mater J,1996,93:370.
25 Olsen M P J. Mathematical modeling of the freezing process of concrete and aggregates[J]. Cem Concr Res,1984,14:113.
26 Duan A. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D].Beijing: Tsinghua University,2009(in Chinese).
段安.受冻融混凝土本构关系研究和冻融过程数值模拟[D].北京:清华大学,2009.
27 Zheng S S, Wang F, Fu X L, et al. Experimental study on freeze-thaw damage model for concrete structures and membersbased on material[J]. J Vibration Shock,2016,35(3):176(in Chinese).
郑山锁,汪锋,付晓亮,等.基于材性的混凝土结构及构件冻融损伤模型试验研究[J].振动与冲击,2016,35(3):176.
28 Li J L. Experiment study on deterioration mechanism of rock under the conditions of freezing-thawing cycles in cold regions based on NMR technology[D].Nanjing: Central South University,2012(in Chinese).
李杰林.基于核磁共振技术的寒区岩石冻融损伤机理试验研究[D].南京:中南大学,2012.
29 Xiao L Z. Recent development on nuclear magnetic resonance in rock samples and its applications [J].Well Logging Technol,1996,20(1):27(in Chinese).
肖立志.岩石核磁共振研究进展及其应用[J].测井技术,1996,20(1):27.
30 Wang H Q, Fu C D, Jing L J, et al. Application of NMR imaging technology in rock petrophysics experiment[J].Well Logging Tech-nol,2005,29(2):95(in Chinese).
王洪强,付晨东,井连江,等.核磁共振成像技术在岩石物理实验中的应用[J].测井技术,2005,29(2):95.
31 Hassanein R, Meyer H O, Carminati A, et al. Investigation of water imbibition in porous stone by thermal neutron radiography [J]. J Phys D,2006,39(19):4284.
32 Powers T C, Willis T F. The air requirement of frost-resistance concrete[J]. Highway Res Board Proc,1950,29:184.
33 Wang X X, Shen X D, Wang H L, et al. Nuclear magnetic resonance analysis of concrete-lined channel freeze-thaw damage[J]. J Ceram Soc Jpn,2015,123(1):43.
[1] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[2] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[3] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[4] 周薛霞,杨赞中,徐艳娇,王路,孙海滨,王永在,杜庆洋,乐红志. 轻质多孔混凝土防水剂的研究进展[J]. 材料导报, 2019, 33(15): 2546-2551.
[5] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[6] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[7] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[8] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[9] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[10] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[11] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[12] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[13] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[14] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[15] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed