Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 125-129    https://doi.org/10.11896/j.issn.1005-023X.2017.022.025
  材料研究 |
CNT-CF水泥基材料传感特性研究*
左俊卿1,2,周虹1,2,姚武3,吴德龙1,2,刘小艳4,张玉梅4
1 上海建工集团股份有限公司,上海 200080;
2 上海高大结构高性能混凝土工程技术研究中心,上海 201114;
3 同济大学先进土木工程材料教育部重点实验室,上海 201804;
4 河海大学力学与材料学院,南京210098
Research on the Sensing Properties of CNT-CF/Cement-based Materials
ZUO Junqing1,2, ZHOU Hong1,2, YAO Wu3, WU Delong1,2, LIU Xiaoyan4, ZHANG Yumei4
1 Shanghai Construction Group Co., Ltd., Shanghai 200080;
2 Shanghai Engineering Research Center of Mega Structure High Performance Concrete, Shanghai 201114;
3 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804;
4 College of Mechanics and Materials, Hohai University, Nanjing 210098
下载:  全 文 ( PDF ) ( 594KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将碳纳米管与碳纤维混杂掺入水泥基材料制备碳纳米管-碳纤维(CNT-CF)水泥基材料,并研究其温敏和压敏传感特性。结果表明,当碳纳米管掺量较低时(<0.5%),碳纳米管能有效提高CNT-CF水泥基材料的温敏和压敏特性;CNT-CF水泥基材料的活化能、温敏系数以及压敏传感线性程度和重复度均随碳纳米管掺量增加而提高;随着碳纳米管掺量继续增加,CNT-CF水泥基材料各项传感性能均有所下降。碳纳米管掺量为0.5%的试样传感特性最优。利用CNT-CF水泥基材料开发水泥基温敏、压敏传感器有一定应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左俊卿
周虹
姚武
吴德龙
刘小艳
张玉梅
关键词:  CNT-CF/水泥基材料  传感特性  温敏  压敏    
Abstract: Carbon nanotubes (CNTs) and carbon fibers (CFs) were incorporated into cement based materials to fabricate CNT-CF/cement-based materials. The temperature-sensitivity and pressure-sensitivity of CNT-CF/cement-based materials were studied. Results show that when content of CNTs is low (<0.5%), CNTs can effectively improve the temperature and pressure sensitive properties of CNT-CF/cement-based materials. The activation energy, temperature sensitivity coefficient, the linearity degree and repeatability rate of pressure-sensitivity increase as the CNT content increases. As the CNT content continue to increase, sensing properties of CNT-CF/cement-based materials decline. Specimen containing 0.5% (mass fraction) CNTs exhibits the optimal sensing properties. Using CNT-CF/cement-based materials to develop cement-based temperature sensor and pressure sensor has a certain application prospect.
Key words:  CNT-CF/cement based materials,sensing properties,temperature-sensitivity    pressure-sensitivity
                    发布日期:  2018-05-08
ZTFLH:  TU528.0  
基金资助: *国家自然科学基金(51508320);上海市青年科技启明星计划资助项目(16QB1402000);上海市国资委企业技术创新和能级提升项目(2014011)
作者简介:  左俊卿:男,1984年生,博士,高级工程师,研究方向为高强高性能混凝土及土木工程结构耐久性E-mail:junqingzuo@163.com
引用本文:    
左俊卿,周虹,姚武,吴德龙,刘小艳,张玉梅. CNT-CF水泥基材料传感特性研究*[J]. 材料导报编辑部, 2017, 31(22): 125-129.
ZUO Junqing, ZHOU Hong, YAO Wu, WU Delong, LIU Xiaoyan, ZHANG Yumei. Research on the Sensing Properties of CNT-CF/Cement-based Materials. Materials Reports, 2017, 31(22): 125-129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.025  或          http://www.mater-rep.com/CN/Y2017/V31/I22/125
1 Kalashnyk N, Faulquesc E, Schj?dt-Thomsena J, et al. Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivity[J]. Synthetic Met, 2017,224:56.
2 Pisello A, D’Alessandroc A, Sara Sambucoa S. Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability[J]. Sol Energ Mat Sol C, 2017,161:77.
3 Zuo J, Yao W, Wu K. Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. Fuller Nanotub Car N, 2015,23(5):383.
4 Wen S, Wang S, Chung D D L. Carbon fiber structural composites as thermistors[J]. Sensor Actuat A-Phys, 1999,78(2-3):180.
5 Chung D D L. Cement-matrix composites for thermal engineering[J]. Appl Therm Eng, 2001,21(16):1607.
6 Yao W, Wang T. Resistivity-temperature effect and testing methods for carbon fiber reinforced cement-based composites[J]. J Tongji University (Nat Sci Ed), 2007,35(4):511(in Chinese).
姚武,王婷婷. 碳纤维水泥基材料的温阻效应及其测试方法[J]. 同济大学学报(自然科学版), 2007,35(4):511.
7 Han B, Ding S, Yu X. Intrinsic self-sensing concrete and structures: A review[J]. Measurement, 2015,59:110.
8 Zuo J, Yao W, Liu X, et al. Sensing properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. J Test Eval, 2012,40(5):838.
9 Materazzi A, Ubertini F, D’Alessandro A. Carbon nanotube cement-based transducers for dynamic sensing of strain[J]. Cement Concrete Comp, 2013,37:2.
10 Danoglidis P, Konsta-Gdoutos M, Gdoutos E, et al. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars[J]. Constr Build Mater, 2016,120:265.
11 Yao W, Zuo Junqing, Wu Keru. Microstructure and thermoelectric properties of carbon nanotube-carbon fiber/cement composites[J]. J Funct Mater, 2013,44(13):1521(in Chinese).
姚武,左俊卿,吴科如. 碳纳米管-碳纤维/水泥基材料微观结构和热电性能[J]. 功能材料, 2013,44(13):1521.
12 Hai R, Bian Y, Wu K. Thermal conduction coefficient of carbon fiber reinforced cement-based composite material[J].Concrete, 2009(7):55(in Chinese).
海然,边亚东,吴科如. 碳纤维水泥基复合材料导热系数的研究[J]. 混凝土, 2009(7):55.
13 Sun M, Li Z. Thermoelectric percolation phenomena in carbon fiber-reinforced concrete[J]. Cement Concrete Res, 1998,28(12):1707.
14 Dresselhaus M, Chen G, Tang M, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater, 2007,19(8):1043.
15 Chen B, Wu K, Yao W. Piezoresistivity in carbon fiber reinforced cement based composites[J]. J Mater Sci Technol, 2004,20(6):746.
16 Han B, Ou J. Embedded piezoresistive cement-based stress/strain sensor[J]. Sensor Actuat A-Phys, 2007,138(2):294.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[3] 胡耀强, 陈法锦, 刘海宁, 张慧芳, 吴志坚, 叶秀深. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 《材料导报》期刊社, 2018, 32(14): 2491-2496.
[4] 赵鸣, 李天宇, 石钰. 铈镧复合氧化物对ZnVCrO陶瓷显微结构及压敏性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 120-124.
[5] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[6] 陈航超, 张素红, 刘生玉, 张志强, 郭建英. N-异丙基丙烯酰胺-丙烯酸钠共聚包覆四氧化三铁温敏磁性吸水树脂的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(20): 30-34.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed