Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 140-146    https://doi.org/10.11896/j.issn.1005-023X.2017.020.029
  计算模拟 |
基于三维LBM-CA模型模拟Al-4.7%Cu合金的枝晶形貌和成分分布*
骈松, 张照, 包羽冲, 刘林, 李日
河北工业大学材料科学与工程学院, 天津 300130
Simulation of Dendrite Morphology and Composition Distribution of Al-4.7%Cu Alloy Based on Three Dimensional LBM-CA Model
PIAN Song, ZHANG Zhao, BAO Yuchong, LIU Lin, LI Ri
School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 2152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立了三维格子玻尔兹曼方法(LBM)-元胞自动机(CA)耦合数值模型,并用该模型模拟研究了Al-4.7%Cu(质量分数)固溶体合金的凝固过程。该耦合模型采用元胞自动机方法模拟枝晶的生长,同时采用基于分子动力学理论的格子玻尔兹曼方法模拟合金凝固过程中的温度场、流场以及溶质场。模拟结果再现了合金凝固过程中的三维枝晶形貌变化以及溶质富集过程,并将三维流场因素考虑进去,定量研究了自然对流、过冷度对单枝晶形貌和成分分布的影响。研究表明,在纯扩散条件下,枝晶呈现对称的生长现象,模拟自由枝晶稳态生长的尖端速度、尖端半径和过冷度的关系与Lipton-Glicksman-Kurz(LGK)理论模型吻合得较好。在自然对流条件下,枝晶的生长形貌呈现不对称性,即枝晶生长在迎流方向上得到了促进,在顺流方向上受到了抑制。熔体过冷度对枝晶生长的影响较大,过冷度的增加导致枝晶生长加快,二次枝晶增多且呈现出粗化现象,枝晶尖端固液界面处的溶质浓度偏高,加重了溶质偏析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
骈松
张照
包羽冲
刘林
李日
关键词:  数值模拟  枝晶生长  三维LBM-CA模型  流场  溶质富集    
Abstract: A new three-dimensional numerical model combining the lattice Boltzmann(LB) and cellular automaton(CA) met-hods was developed to simulate heat transport, fluid flow, solute diffusion, and dendritic growth in the process of the Al-4.7%Cu solidification of the single-phase solid solution alloy. In the coupled model, the dendritic growth was simulated by the cellular auto-maton method, and the temperature field, the flow field and the concentration field in the process of dendritic growth were numerically solved using the lattice Boltzmann method based on the molecule-kinetic theory. The simulation results verify that the change of dendrite morphology and the solute concentration during the solidification process which were reproduced. The effects of natural convection and undercooling on the dendrite morphology and composition distribution were studied quantitatively. The results show that under the condition of pure diffusion, the dendritic growth is symmetrical, the relationship between the tip velocity, the tip radius and the undercooling degree of the steady growth of simulated free dendrite is in good agreement with the predictions of the Lipton-Glicksman-Kurz(LGK) model. Under the condition of natural convection, themorphology of dendrite growth is asymmetric, that is to say, the dendritic growth in the upstream region of the natural flow is promoted, as well as the dendrite growth in the downstream region is inhibited. The effect of undercooling on dendrite growth is also great, the increase of undercooling leads to the increase of dendrite growth, and the secondary arms increase and coarsen, the solute concentration at the solid-liquid interface of the dendrite tip increases, which aggravates the solute segregation.
Key words:  numerical simulation    dendrite growth    three dimensional LBM-CA model    flow field    solute enrichment
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG146.2  
基金资助: *国家自然科学基金(51475138)
作者简介:  骈松:男, 1990年生,硕士研究生,主要从事材料加工CAD/CAE研究 E-mail:1213542910@qq.com 李日:通讯作者,男,1966年生,博士,教授,研究方向为铸造CAD/CAE E-mail:sdzllr@163.com
引用本文:    
骈松, 张照, 包羽冲, 刘林, 李日. 基于三维LBM-CA模型模拟Al-4.7%Cu合金的枝晶形貌和成分分布*[J]. 《材料导报》期刊社, 2017, 31(20): 140-146.
PIAN Song, ZHANG Zhao, BAO Yuchong, LIU Lin, LI Ri. Simulation of Dendrite Morphology and Composition Distribution of Al-4.7%Cu Alloy Based on Three Dimensional LBM-CA Model. Materials Reports, 2017, 31(20): 140-146.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.029  或          http://www.mater-rep.com/CN/Y2017/V31/I20/140
1 Rappaz M, Gandin C A.Probabilistic modeling of microstructure formation in solidification[J].Acta Metal Mater,1993,41(2):345.
2 Belteran-sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J].Metall Mater Trans A,2004,35(8):2471.
3 Shan B W, Lin X,Lei W, et al.A new growth kinetics in simulation of dendrite growth by cellular automaton method[J].Adv Mater Res,2007,26(28):957.
4 Feng Z G,Michaelides E E.The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. J Comput Phys,2004,195(2):602.
5 Zhu L H,Guo Z L.GPU accelerated lattice Boltzmann simulation of flow in porous media[J].Chinese J Comput Phys,2015,32(1):20(in Chinese).
朱炼华,郭照立.基于格子Boltzmann方法的多孔介质流动模拟GPU加速[J].计算物理,2015,32(1):20.
6 Fu Y,Zhao S,Wang W,et al. Application of lattice Boltzmann met-hod for simulation of multiphase/multicomponent flow in microfui-dics[J].Ciesc J,2014,65(7):2535.
7 Yang C R, Sun D K, Pan S Y, et al. CA-LBM for the simulation of dendritic growth under natural convection[J]. Acta Metall Sin, 2009, 45(1):43(in Chinese).
杨朝蓉, 孙东科, 潘诗琰, 等. CA-LBM模型自然对流作用下的枝晶生长[J].金属学报, 2009, 45(1):43.
8 Bohumir J, Mohsen E, Sergio F,et al.Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth[J].Comput Phys Commun, 2014, 185(3):939.
9 Sun D K, Zhu M F, Yang C R, et al. Modelling of dendritic growth in forced and natural conwections[J].Acta Phys Sin,2009, 58(13):285(in Chinese).
孙东科, 朱鸣芳, 杨朝蓉, 等. 强制对流和自然对流作用下枝晶生长的数值模拟[J]. 物理学报, 2009, 58(13):285.
10何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论和应用[M]. 北京:北京科学出版社, 2009:49.
11Li X, Fang B, Xu X G,et al.Research progress in 3D simulation of microstructure of materials[J].Mater Rev,2011, 25(S2):245(in Chinese).
李星, 方斌, 徐秀国, 等.材料微观组织结构三维模拟的研究进展[J].材料导报,2011, 25(专辑18):245.
12Eshraghi M, Felicelli S D, Jelinek B.Three dimensional simulation of solutal dendrite growth using lattice Boltzmann and cellular automaton methods[J].J Cryst Growth,2012,354(1):129.
13Yin H, Feliceli S D,Wang L.Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods[J].Acta Mater,2011,59(8):3124.
14Guo Z L, Li Q, Zheng C G.Lattice Boltzmann simulation of double diffusive natural convection[J].Chinese J Comput Phys,2002,19(6):483(in Chinese).
郭照立,李青,郑楚光.双扩散自然对流的格子Boltzmann模拟[J].计算物理,2002,19(6):483.
15Pan S Y, Zhu M F.A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth[J]. Acta Mater,2010,58(1):340.
16Guo Z, Zheng C, Shi B. An extrapolation method for pressure and velocity boundary conditions in lattice Boltzmann method[J]. Chinese Phys, 2002,11(4):366.
17Nie D M, Lin J Z. Boundary conditions in lattice boltzmann method[J]. Chinese J Comput Phys, 2004, 21(1):21(in Chinese).
聂德明, 林建忠. 格子Boltzmann 方法中的边界条件[J]. 计算物理, 2004,21(1):21.
18Lipton J, Glicksman M E,Kurz W. Equiaxed dendrite growth at small supercooling[J].Metall Mater Trans A,1987,18(2):34.
19Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy melts[J].Mater Sci Eng, 1984,65(1):57.
20崔忠圻, 谭耀春.金属学与热处理[M].北京:机械工业出版社,2007:78.
21Rojas R,Takaki T, Ohno M. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection[J]. J Comput Phys, 2015,298(1):29.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[9] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[10] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[11] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[12] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[13] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[14] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[15] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed