Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 107-113    https://doi.org/10.11896/j.issn.1005-023X.2017.020.023
  材料研究 |
早期温湿度条件对柠檬酸改性硫氧镁胶凝材料性能的影响及机理*
巴明芳, 朱杰兆, 柳俊哲
宁波大学建筑工程与环境学院,宁波 315211
Effects and Mechanism of Early Temperature and Humidity on Properties of Modified Magnesium Oxysulfate Cementitious Materials
BA Mingfang, ZHU Jiezhao, LIU Junzhe
Faculty of Architectural Civil Engineering and Environment, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 3030KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了确定柠檬酸改性硫氧镁(CMOs)胶凝材料的早期温湿度稳定性,分别研究了早期养护温湿度对其力学性能及耐水性能的影响,并采用SEM、XRD及TG测试技术对其影响机理进行了分析。结果表明:CMOs早期力学性能和耐水性随着早期养护温度升高先提高后降低,35 ℃左右其3 d抗折强度达到最大值10.4 MPa,3 d抗压强度达到最大值68.0 MPa,浸水46 d后软化系数达到0.9;而后期力学性能和耐水性则随着早期养护温度的提高有不同程度的降低;结果还发现相同早期养护温度时早期饱水养护大大降低CMOs的力学性能和耐水性。同时微观结构分析表明,早期养护温度的升高可以使CMOs水化反应更充分,结构相对比较致密,从而使其早期力学性能有明显提高,但水化后期CMOs结构稳定性随着早期养护温度的升高而明显降低,从而导致其后期强度有不同程度的降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巴明芳
朱杰兆
柳俊哲
关键词:  硫氧镁胶凝材料  早期温湿度  力学性能  耐水性    
Abstract: In order to determine early temperature and humidity related stability of citric-acid modified magnesium oxysulfate (CMOs) cementitious materials, the effects and influencing mechanism of different early curing temperature and humidity on mechanical properties and water resistance of CMOs were investigated. The results show that the early mechanical property of CMOs materials increases first and then decreases with the increase of the early curing temperature. At about 35 ℃ the maximum value of flexural strength, compressive strength and water resistance coefficient with 46 days immersion reach 10.4 MPa, 68.0 MPa and 0.9 respectively; While the late mechanical property and water resistance of CMOs material decreases with the increase of the early curing temperature. Furthermore, the mechanical properties and water resistance of CMOs materials with steam curing significantly decreases. At the same time, micro-analysis results show that the hydration reaction of CMOs materials can be more complete because of the increase of the early curing temperature so that the early mechanical properties improve significantly. While the later structural stability deceases with the increase of the early curing temperature, which leads to the decrease of its mechanical properties at the later stage.
Key words:  magnesium oxysulfate    early temperature and humidity    mechanical properties    water resistance
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TU528.37  
基金资助: *国家自然科学基金(51478227); 浙江省自然科学基金(LY17E080009);宁波市自然科学基金(2017A610311)
作者简介:  巴明芳:博士,副教授,研究方向为高性能绿色水泥基材料及其耐久性 E-mail:bamingfang@nbu.edu.cn 柳俊哲:通讯作者,教授,博士研究生导师, 研究方向为高性能水泥基材料及耐久性 E-mail:liujunzhe@nbu.edu.cn
引用本文:    
巴明芳, 朱杰兆, 柳俊哲. 早期温湿度条件对柠檬酸改性硫氧镁胶凝材料性能的影响及机理*[J]. 《材料导报》期刊社, 2017, 31(20): 107-113.
BA Mingfang, ZHU Jiezhao, LIU Junzhe. Effects and Mechanism of Early Temperature and Humidity on Properties of Modified Magnesium Oxysulfate Cementitious Materials. Materials Reports, 2017, 31(20): 107-113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.023  或          http://www.mater-rep.com/CN/Y2017/V31/I20/107
1 Urwongse L, Sorrell C A. Phase relationships in magnesium oxysulfatecements[J]. J Am Ceram Soc, 1980,63(9-10):523.
2 Li Y, Yu H F, Dong J G, et al. Research progress in deliquescence dehalogenation and efflorescence of magnesium oxychloride cement[J]. Bull Chin Ceram Soc, 2010,29(4):858(in Chinese).
李颖, 余红发, 董金关, 等. 氯氧镁胶凝材料吸潮返卤泛霜的研究进展[J]. 硅酸盐通报, 2010,29(4):858.
3 Li Z Y, Jin D X, Zhou C, et al. Laboratory study on magnesia cement for oil well sealing and temporary blocking[J]. J Southwest Petroleum University(Sci Technol Ed), 2011,33(5):152(in Chinese).
李早元, 靳东旭, 周超, 等. 镁氧水泥用于油井堵漏及暂闭的室内研究[J]. 西南石油大学学报(自然科学版), 2011,33(5):152.
4 Zhou X, Li Z. Light-weight wood-magnesium oxychloride cement composite building products made by extrusion[J]. Construct Build Mater, 2012(1):382.
5 Li Z G, Ji Z S, Li Y H. Research progress on deformation and cracking of magnesium oxychloride cement products[J]. Bull Chin Ceram Soc, 2012,31(2):1(in Chinese).
李振国, 吉泽升, 李一珩. 氯氧镁水泥制品变形及开裂的研究进展[J]. 硅酸盐通报, 2012,31(2):1.
6 Cole W F, Demediuk T Aust.X-ray, thermal, and dehydration stu-dies on magnesium oxychlorides [J]. Australian J Chem, 1955,8(2):234.
7 Demediuk T, Cole W F, Heuber H V. Studies on magnesium and calcium oxychlorides [J]. Australian J Chem, 1955,8(2):215.
8 Demediuk T, Cole W F. Study of magnesium oxysulphase [J]. Australian J Chem, 1957,10(2):287.
9 Kahle K. Mechanism formation of magnesium-sulfate cements[J]. Silikatechnik, 1972,2(5):148.
10Vincenzo M Sglavo, Riccardo Ceccato. Influence of curing temperature on the evolution of magnesium oxychloride cement [J]. J Mater Sci, 2011,46:6726.
11余红发. 氯氧镁水泥及其应用[M]. 北京:中国建筑工业出版社, 1993:363.
12Luo J G, Yao J S, Sun J E. Study on kinetics of hydration for MgO-MgSO4-H2O cementitious system[J]. Bull Chin Ceram Soc, 1998,26(2):157(in Chinese).
罗建国, 姚吉升, 孙建鄂. MgO-MgSO4-H2O胶凝体系水化动力学的研究[J]. 硅酸盐学报, 1998,26(2):157.
13Ding Y, Zhao H Z, Sun Y G, et al. Superstructured magnesium hydroxide sulfate hydrate fibers photoluminescence study[J]. Int J Inorg Mater, 2001,3(2):151.
14Yue T, Gao S Y, Zhu L X, et al. Crystal growth and crystal structure of magnesium oxysulfate 2MgSO4·Mg(OH)2·2H2O[J]. J Molecular Struct, 2002,616(1-3):247.
15Ma P H, Wei Z Q, Xu G, et al. Dehydration and desulfuration of magnesium oxysulfate whisker[J]. J Mater Sci Lett, 2000,19:257.
16Liu Z P, Zhang W M, Yang Y H, et al. Hydrothermal synthesis of sector-like hydrous magnesium nickel oxysulfate whisker[J]. J Mater Sci Lett, 2002,21:65.
17Xiang L, Liu F, Li J, et al. Hydrothermal formation and characte-rization of magnesium oxysul-fate whiskers[J]. Mater Chem Phys, 2004,87:424.
18Deng D H. A study on the theories and techniques for improvimg properties of MgO-based basic salt cements and their articles[D]. Changsha:Central South University, 2005(in Chinese).
邓德华. 提高镁质碱式盐水泥性能的理论与应用研究[D]. 长沙: 中南大学, 2005.
19Wu C Y, Yu H F. Effects of phosphoric acid and phosphates on magnesium oxysulfate cements[J]. Mater Struct, 2015,48:907.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed