Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 75-83    https://doi.org/10.11896/j.issn.1005-023X.2017.017.011
  材料综述 |
水轮机过流部件抗磨蚀涂层技术研究进展*
张磊1,2, 陈小明1,2, 吴燕明1,2, 周夏凉1,2, 赵坚1, 伏利2, 毛鹏展1,2, 刘伟1
1 水利部产品质量标准研究所,浙江省水利水电装备表面工程技术研究重点实验室,杭州310012;
2 水利部杭州机械设计研究所,水利机械及其再制造技术浙江省工程实验室,杭州310012
Technological Advances in Coatings for Abrasion-cavitation Erosion Protection of Hydraulic Turbine Flow-parts
ZHANG Lei1,2, CHEN Xiaoming1,2, WU Yanming1,2, ZHOU Xialiang1,2, ZHAO Jian1, FU Li2, MAO Pengzhan1,2, LIU Wei1
1 Key Laboratory of Surface Engineering of Equipment for Hydraulic Engineering of Zhejiang Province, Standard & Quality Control Research Institute, Ministry of Water Resources, Hangzhou 310012;
2 Water Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province, Hangzhou Mechanical Research Institute, Ministry of Water Resources, Hangzhou 310012
下载:  全 文 ( PDF ) ( 3686KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水轮机过流部件在运行过程中,因长期受到气蚀、高速水流中泥沙等硬质颗粒的磨损等作用而产生磨蚀破坏,导致过流部件材料失效,严重影响了水轮机的运行效率、安全性和服役寿命。在过流部件表面进行涂层防护是提高水轮机抗磨蚀能力的有效方法之一。简要阐述了水轮机过流部件气蚀和泥沙磨损的机理及其影响因素,为涂层选材及制备工艺研究提供理论依据,同时综述了近年来水轮机耐磨蚀涂层技术的研究进展,评述了不同类型涂层的特点、存在的问题及改进方法,并展望了其未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张磊
陈小明
吴燕明
周夏凉
赵坚
伏利
毛鹏展
刘伟
关键词:  水轮机过流部件  气蚀  泥沙磨损  涂层技术  涂层材料    
Abstract: The flow-parts of hydraulic turbine in the running process are long time subjected to cavitation erosion and abrasion from the sands in the high-speed flow, resulting in material failure and intense reduction of the operation efficiency, safety and service life of turbine. Coating on the flow-parts is one of the most effective methods to protect the hydraulic turbine from cavitation erosion and sand abrasion. The mechanism of cavitation erosion and sand abrasion, and their influencing factors are briefly explained to provide theoretical basis for the material selection and preparation technologies of coatings. Furthermore, recent research progress in coating technologies of abrasion-cavitation erosion resistance for hydraulic turbine flow-parts is reviewed, the characteristics, existing problems and improved methods of different coatings are discussed, and their development trends in the future are also pointed out.
Key words:  hydraulic turbine flow-part    cavitation erosion    sand abrasion    coating technology    coating material
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TG174.4  
基金资助: 水利部“948”项目(201218);浙江省公益性技术应用研究计划项目(2013C31044;2014C31156);杭州市科技发展计划项目(20120433B35)
作者简介:  张磊:男,1990年生,硕士,研究方向为材料表面工程及装备再制造技术 E-mail: qingyi22@163.com
引用本文:    
张磊, 陈小明, 吴燕明, 周夏凉, 赵坚, 伏利, 毛鹏展, 刘伟. 水轮机过流部件抗磨蚀涂层技术研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 75-83.
ZHANG Lei, CHEN Xiaoming, WU Yanming, ZHOU Xialiang, ZHAO Jian, FU Li, MAO Pengzhan, LIU Wei. Technological Advances in Coatings for Abrasion-cavitation Erosion Protection of Hydraulic Turbine Flow-parts. Materials Reports, 2017, 31(17): 75-83.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.011  或          http://www.mater-rep.com/CN/Y2017/V31/I17/75
1 Kumar P,Saini R P. Study of cavitation in hydro turbines—A review[J]. Renew Sustain Energy Rev,2010,14(1):374.
2 Padhy M K,Saini R P. A review on silt erosion in hydro turbines[J]. Renew Sustain Energy Rev,2008,12(7):1974.
3 Singh R,Tiwari S K,Mishra S K. Cavitation erosion in hydraulic turbine components and mitigation by coatings:Current status and future needs[J]. J Mater Eng Perform,2012,21(7):1539.
4 Liu W,Zheng Y G,Yao Z M,et al. Research progress on cavitation erosion of metallic materials[J]. J Chin Soc Corros Prot,2001,21(4):250(in Chinese).
柳伟,郑玉贵,姚治铭,等. 金属材料的空蚀研究进展[J]. 中国腐蚀与防护学报,2001,21(4):250.
5 Chen J H,Wu W. Cavitation erosion behavior of Inconel 690 alloy[J]. Mater Sci Eng A,2008,489(1):451.
6 Kornfeld M,Suvorov L. On the destructive action of cavitation[J]. J Appl Phys,1944,15(6):495.
7 Finnie I. Some reflections on the past and future of erosion[J]. Wear,1995,186-187:1.
8 Zhang X L,Sun D B,Yu H Y,et al. Effect of corrosion on cavitation damage process[J]. Corrs Sci Technol Prot,2001,13(3):162(in Chinese).
张秀丽,孙冬柏,俞宏英,等. 金属材料空蚀过程中的腐蚀作用[J]. 腐蚀科学与防护技术,2001,13(3):162.
9 Chen Z Y. The role of oxidization in cavitation damage[J]. J Harbin Engineering University,2007,28(9):1056(in Chinese).
陈昭运. 空蚀破坏的微观氧化过程[J]. 哈尔滨工程大学学报,2007,28(9):1056.
10 Wang Z C,Zhang Y,Zhang X Q. Thermal effect of cavitation erosion[J]. Chin J Mater Res,2001,15(3):287(in Chinese).
王者昌,张毅,张晓强. 空蚀过程中的热效应[J]. 材料研究学报,2001,15(3):287.
11 Thapa B,Chaudhary P,Dahlhaug O G,et al. Study of combined effect of sand erosion and cavitation in hydraulic turbines[C]//International Conference on Small Hydropower-Hydro Sri Lanka.Kandy,2007:1.
12 Toshima M,Okamura T,Satoh J,et al. Basic study of coupled damage caused by silt abrasion and cavitation erosion:2nd report,experiments with water channel[J]. Trans Jpn Soc Mech Eng Series B,1991,57(539):2186.
13 Li S C. Cavitation enhancement of silt erosion-an envisaged micro model[J]. Wear,2006,260(9-10):1145.
14 Grein H,Schachenmann A. Solving problem of abrasion in hydroelectric machinery[J]. Water Power Dam Constr,1992,8:19.
15 Wang Z Y,Long N D,Zhu J H. Review on material resistant to cavitation erosion and its application[J]. Develop Appl Mater,2001,16(6):34(in Chinese).
王再友,龙霓东,朱金华. 抗空蚀材料研究应用进展[J]. 材料开发与应用,2001,16(6):34.
16 Mann B S,Arya V. Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines[J]. Wear,2001,249(5-6):354.
17 Varis T,Suhonen T,Ghabchi A,et al. Formation mechanisms,structure,and properties of HVOF-sprayed WC-CoCr coatings:An approach toward process maps[J]. J Therm Spray Technol,2014,23(6):1009.
18 Wang Z C,Chen J. Compound metal layer with cavitation erosion and abrasion resistance and its application in hydraulic turbine[J]. Wel-ding Joining,2009(2):38(in Chinese).
王者昌,陈静. 水轮机抗空蚀磨损金属复层方法、材料和应用[J]. 焊接,2009(2):38.
19 Gao Y T,Li C L,Guo W. Application of HVOF technology in anti-abrasion for hydraulic turbine in Liujiaxia hydropower station[J]. Shaanxi Electric Power,2008,36(5):51(in Chinese).
高云涛,李翠林,郭维. 高速火焰喷涂技术在刘家峡水电厂水轮机抗磨蚀方面的应用[J]. 陕西电力,2008,36(5):51.
20 Zhang Z D,Fan Z S,Yan T. Research progress on nanostructured WC-Co coatings deposited by supersonic flame spraying technology[J]. Chin Mater Sci Technol Equipment,2013(1):13(in Chinese).
张正东,樊自拴,晏涛. 超音速火焰喷涂纳米结构WC-Co涂层研究进展[J]. 中国材料科技与设备,2013(1):13.
21 Jia K,Fischer T E,Gallois B. Microstructure,hardness and toughness of nanostructured and conventional WC-Co composites[J]. Nanostruct Mater,1998,10(5):875.
22 Wu Y,Hong S,Zhang J,et al. Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying[J]. Int J Refractory Metals Hard Mater,2012,32(5):21.
23 Chen X M,Zhou X L,Wu Y M,et al. Properties of micro and nanostructured WC-10Co4Cr coatings by HVOF spray[J]. Heat Treatment Metals,2016,41(5):52(in Chinese).
陈小明,周夏凉,吴燕明,等. 超音速火焰喷涂微、纳米结构WC-10Co4Cr涂层及其性能[J]. 金属热处理,2016,41(5):52.
24 Thakur L,Arora N. A study of processing and slurry erosion behavior of multi-walled carbon nanotubes modified HVOF sprayed nano-WC-10Co-4Cr coating[J]. Surf Coat Technol,2017,309:860.
25 Stewart D A,Shipway P H,Mccartney D G. Abrasive wear beha-viour of conventional and nanocomposite HVOF-sprayed WC-Co coa-tings[J]. Wear,1999,225(4):789.
26 Li C,Ding Z X,Ding X,et al. Effect of WC size on the erosion wear resistance of WC-CoCr coatings deposited by HVOF[J]. Therm Spray Technol,2016,8(3):18 (in Chinese).
李超,丁彰雄,丁翔,等. WC尺度对HVOF制备的WC-CoCr涂层抗冲蚀磨损性能的影响[J]. 热喷涂技术,2016,8(3):18.
27 Wang G G,Sun D B,Fan Z S,et al. The cavitation behavior and slurry wear resistance of WC-12Co cermets coatings sprayed by AC-HVAF technology[J]. China Surf Eng,2006,19(4):21(in Chinese).
王国刚,孙冬柏,樊自拴,等. HVAF制备WC-12Co涂层的空蚀和磨损性能研究[J]. 中国表面工程,2006,19(4):21.
28 Zhao X,Li P,Wang Q,et al. Study on abrasive wear performance of WC-10Co-4Cr coating sprayed by AC-HVAF[J]. Hot Working Technol,2010,39(20):132 (in Chinese).
赵翔,李萍,王群,等. AC-HVAF制备WC-10Co-4Cr涂层抗磨粒磨损性能研究[J]. 热加工工艺,2010,39(20):132.
29 Wang Q,Tang Z,Cha L. Cavitation and sand slurry erosion resis-tances of WC-10Co-4Cr coatings[J]. J Mater Eng Perform,2015,24(6):1.
30 王者昌,陈前淮. GB1系列抗磨蚀堆焊焊条的研制和应用[C]//第十六次中国水电设备学术讨论会论文集.哈尔滨:黑龙江科学技术出版社,2007:465.
31 Romo S A,Santa J F,Giraldo J E,et al. Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy[J]. Tribol Int,2012,47:16.
32 Santa J F,Blanco J A,Giraldo J E,et al. Cavitation erosion of martensitic and austenitic stainless steel welded coatings[J]. Wear,2011,271(9):1445.
33 Li H. Submerged-arc welding with wide-band stainless steel electrode on the top cover of hydro generator[J]. Welding Technol,2009,38(10):21(in Chinese).
李华. 水轮发电机顶盖不锈钢带极宽带埋弧堆焊[J]. 焊接技术,2009,38(10):21.
34 Wang A M,Zhang H W. Surfacing welding technology with stainless steel band-electrode of high hardness for hydraulic turbine components[J]. Machinery Manufacturing Abstracts-Welding Section,2012(6):13(in Chinese).
王爱民,张汇文. 水轮机部件高硬度不锈钢带极堆焊工艺[J]. 机械制造文摘-焊接分册,2012(6):13.
35 Li M W,Yao L J,Hu H W,et al. Submerged-arc cladding with band-electrode on the bottom ring of hydraulic turbine in Maoergai power station[J]. Welding Joining,2013(7):67(in Chinese).
李明伟,姚立家,胡红伟,等. 毛尔盖电站水轮机底环带极埋弧堆焊[J]. 焊接,2013(7):67.
36 Chang L,Yoon E. Microstructure and properties of laser remelted chromium carbide layer[J]. Surf Coat Technol,1998,99:203.
37 Liu W,Zheng Y G,Yao Z M,et al. Resistance to cavitation corrosion and erosion/abrasion of laser cladding co alloy coating[J]. Mater Prot,2002,35(3):18(in Chinese).
柳伟,郑玉贵,姚治铭,等. 激光熔敷钴合金涂层的抗空蚀和冲刷磨损性能[J]. 材料保护,2002,35(3):18.
38 Singh R,Kumar D,Mishra S K,et al. Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resis-tance[J]. Surf Coat Technol,2014,251(29):87.
39 Zhang X B,Zang C F,Chen S Y,et al. Cavitation erosion behaviour of NiCrSiB coatings on CrNiMo stainless steel by laser cladding[J]. Chin J Nonfer Met,2008,18(6):1064(in Chinese).
张小彬,臧辰峰,陈岁元,等. CrNiMo不锈钢激光熔覆NiCrSiB涂层空蚀行为[J]. 中国有色金属学报,2008,18(6):1064.
40 Paul C P,Gandhi B K,Bhargava P,et al. Cobalt-free laser cladding on AISI type 316L stainless steel for improved cavitation and slurry erosion wear behavior[J]. J Mater Eng Perform,2014,23(12):4463.
41 Balu P,Hamid S,Kovacevic R. An experimental study on slurry erosion resistance of single and multilayered deposits of Ni-WC produced by laser-based powder deposition process[J]. J Mater Eng Perform,2013,22(11):3398.
42 Jiang H R. Laser surface modification of 00Cr13Ni4Mo hydro turbine blade stainless steel[D]. Wuhan:Huazhong Univeristy of Science & Technology,2012(in Chinese).
江桦锐. 00Cr13Ni4Mo不锈钢水轮机叶片的激光表面改性研究[D]. 武汉:华中科技大学,2012.
43 Wang L R,Wu Y M,Chen X M,et al. Study on mechanical property and fracture mechanism of ceramic particle-reinforced epoxy compo-site coating[J]. Electroplating Finishing,2015,34(22):1288(in Chinese).
王莉容,吴燕明,陈小明,等. 陶瓷颗粒增强环氧树脂复合涂层的力学性能及断裂机理分析[J]. 电镀与涂饰,2015,34(22):1288.
44 于维峰,程书官. 三门峡水电站运行四十年水轮机过流部件防磨蚀材料总结[C]//中国水力发电工程学会2007年水轮发电机组稳定性技术研讨会论文集.北京:经济日报出版社,2007:310.
45 Correa C E,García G L,García A N,et al. Wear mechanisms of e-poxy-based composite coatings submitted to cavitation[J]. Wear,2011,271(9):2274.
46 Hu S K,Deng C H,Yu J. Application of HTPB-modified epoxy resin composite material in hydraulic turbine blades[J]. Rubber Sci Technol Market,2012,10(4):26.
胡少坤,邓春华,于晶. HTPB改性环氧树脂复合材料在水轮机叶片上的应用[J]. 橡胶科技市场,2012,10(4):26.
47 Xing Z G,Lu Z L,Cui Y. Erosive wear resistance of epoxy pesin/SiC wear resistant coating modified by polyurethane[J]. Mater Mech Eng,2010,34(1):84.
邢志国,吕振林,崔永. 聚氨酯增韧改性环氧树脂粘接SiC颗粒耐磨涂层的耐冲蚀性能[J]. 机械工程材料,2010,34(1):84.
48 Kang Y,Chen X,Song S,et al. Friction and wear behavior of nanosi-lica-filled epoxy resin composite coatings[J]. Appl Surf Sci,2012,258(17):6384.
49 Xia S Q. Study on the wear resistance of Al2O3 particles reinforced epoxy resin composite[D]. Mianyang:Southwest University of Science and Technology,2014(in Chinese).
夏松钦. Al2O3颗粒/环氧树脂基复合材料的制备及磨损性能研究[D]. 绵阳:西南科技大学,2014.
50 Wu X Z,Wu S M,Guo W K. Application of modified polyurethane material of abrasion-cavitation resistance in the flow components of hydropower unit[J]. Yellow River,2010,32(3):104(in Chinese).
武现治,吴四民,郭维克. 改性聚氨酯抗磨蚀材料在机组过流部件的应用[J]. 人民黄河,2010,32(3):104.
51 Zhang R Z,Lu W,Yan D K,et al. Abrasion resistance analysis of spray polyurethane elastic coating on turbine blades[J]. Surf Tech-nol,2014,43(1):11(in Chinese).
张瑞珠,卢伟,严大考,等. 水轮机叶片表面聚氨酯弹性涂层的抗磨蚀性分析[J]. 表面技术,2014,43(1):11.
52 Zhang W B,Ren Y. Application of polyurethane coating in hydraulic turbine abrasion protection[J]. Electron World,2013(3):91(in Chinese).
张武斌,任岩. 聚氨酯涂层在水轮机磨蚀防护中的应用[J]. 电子世界,2013(3):91.
53 Chen B S,Luan D C,Li Q L,et al. Erosion wear resistance properties of PUE/micro-SiO2 composites[J]. Polyurethane Ind,2011,26(2):31(in Chinese).
陈宝书,栾道成,李骑伶,等. PUE/微米SiO2复合材料抗冲蚀磨损性能研究[J]. 聚氨酯工业,2011,26(2):31.
54 Xu B F,Lin Z D,Chen J M,et al. Preparation and characterization of wear-resistant polyurethane-based materials[J]. Appl Mech Mater,2014,556-562:343.
55 Zhang R Z,Lu W,Yan D K,et al. Cavitation erosion resistant hydrophobic fluorinated polyurethane[J]. Acta Polym Sin,2015(7):808(in Chinese).
张瑞珠,卢伟,严大考,等. 疏水性含氟聚氨酯的合成及其耐气蚀磨损性能的研究[J]. 高分子学报,2015(7):808.
56 Tang Y,Yang J,Yin L,et al. Fabrication of superhydrophobic polyurethane/MoS2 nanocomposite coatings with wear-resistance[J]. Colloids Surf A: Physicochem Eng Aspects,2014,459(14):261.
57 Sun M M, Zhang B,Zhang X G,et al. Study on two-component polyurethane adhesives[J]. Chem Adhes,2010,32(2):22(in Chinese).
孙明明,张斌,张绪刚,等. 双组分聚氨酯胶黏剂的研究[J]. 化学与粘合,2010,32(2):22.
58 Zhao Y Y,Yan D K,Zhang R Z,et al. Abrasion resistance of polyurethane-cemented carbide YG8 double-layer coating[J]. Polyurethane Ind,2014,29(2):25(in Chinese).
赵元元,严大考,张瑞珠,等. 聚氨酯-硬质合金YG8双层涂层的抗磨蚀性能研究[J]. 聚氨酯工业,2014,29(2):25.
59 王建升,李勇,卢海霞,等. 一种用电火花沉积结合激光熔覆增强金属水轮机转轮叶片表面的方法:中国,103805992 A[P]. 2014-05-21.
60 庞佑霞,张昊,黄东胜,等. 叶轮用有机复合涂层:中国,201761115 A[P]. 2010-08-18.
61 Gao X J,Wang B Q,Jia P B,et al. Preparation technology and latest development of functionally gradient materials[J]. Mater Rev:Rev,2014,28(1):31(in Chinese).
高晓菊,王伯芊,贾平斌,等. 功能梯度材料的制备技术及其研发现状[J]. 材料导报:综述篇,2014,28(1):31.
62 Chen Y L,Zhang P L. Research on improving wear-resisting performance of hydro-turbine based on technological gradient[J]. Water Power,2014,40(4):61(in Chinese).
陈奕林,张珮纶. 基于梯度技术提高水轮机耐磨性能的研究[J]. 水力发电,2014,40(4):61.
63 Yang F,Feng L J,Li G Z,et al. Preparation and properties of graded SiO2/EP wear-resistant composite coating[J]. Corros Sci Prot Technol,2015,27(5):454(in Chinese).
杨帆,冯拉俊,李光照,等. SiO2/EP梯度耐磨复合涂层的制备及其性能研究[J]. 腐蚀科学与防护技术,2015,27(5):454.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[3] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[4] 杨鸿泰, 代明江, 李洪, 林松盛, 侯慧君, 石倩, 韦春贝. Al含量对TiAlN涂层组织结构和性能的影响[J]. 材料导报, 2018, 32(20): 3573-3578.
[5] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[6] 马妞, 黄佳木, 苏俊, 尹凌毅. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响[J]. 材料导报, 2018, 32(16): 2768-2772.
[7] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[8] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[9] 孙博,程江波,刘奇,冯源,梁秀兵. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 《材料导报》期刊社, 2018, 32(12): 1978-1982.
[10] 张天刚,孙荣禄,安通达,张宏伟. Ti811表面单道与多道TC4激光熔覆层微观组织对比[J]. 《材料导报》期刊社, 2018, 32(12): 1983-1987.
[11] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[12] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
[13] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[14] 杨贵荣, 宋文明, 王建儒, 张玉福, 王富强, 马颖. 添加碳化钨和石墨改善真空熔覆Ni-Co基合金涂层的极化行为[J]. 材料导报, 2018, 32(6): 924-929.
[15] 吴坤尧, 孟志新, 李兆, 丁旭, 张斌, 张俊彦. 低摩擦长寿命类富勒烯碳基薄膜的制备及其摩擦学特性[J]. 《材料导报》期刊社, 2018, 32(4): 559-562.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed