Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 131-135    https://doi.org/10.11896/j.issn.1005-023X.2017.01.018
  环境修复材料 |
天然有机质对纳米碳管环境行为的影响研究进展
王 朋1, 张 迪1, 张 凰2, Ghosh Saikat1
1 昆明理工大学环境科学与工程学院,昆明 650500;
2 昆明理工大学,云南省食品安全研究院,昆明 650500
Influence of Natural Organic Matter on Environmental Behavior of Carbon Nanotubes: A Review
WANG Peng1, ZHANG Di1, ZHANG Huang2, Ghosh Saikat1
1 Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500;
2 Yunnan Institute of Food Safety, Kunming University of Science & Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着纳米技术的快速发展,大量的纳米碳管(CNTs)不可避免地释放到环境中。由于其较大的憎水性表面,CNTs与有机污染物和天然有机质(NOM)强烈地相互作用。综述了NOM存在下CNTs的环境行为,包括NOM对CNTs分散特性和吸附有机污染物特性的影响。着重论述了NOM的理化性质对CNTs分散的影响,“拉拉链”或“胶束包裹”是主要的分散机制。强调应该对不同分散机制下分散的CNTs与有机污染物的相互作用给予更多的关注,提出了目前在液相环境中直接测定CNTs表面积的新思路,并对今后的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王 朋
张 迪
张 凰
Ghosh Saikat
关键词:  极性  结构  离子强度  分散机制  吸附贡献    
Abstract: Rapid development of nanotechnology raises the possibility of imminent environmental release of carbon nanotubes (CNTs) due to their extensive production and usage. Enhanced hydrophobicity of CNTs promotes the strong interactions with orga-nic pollutants and natural organic matter (NOM). This paper reviews the environmental behavior of CNT in the presence of NOM, including the influence of NOM on CNTs dispersion and adsorption characteristics of organic pollutants. The “unzipping” and micelle coating have been reported as the prime dispersion mechanism depending on the physicochemical properties of NOM. The interactions between organic pollutants and dispersed CNTs by different dispersion mechanisms should be paid further attention to unveil under-lying adsorption mechanisms. Future research regarding direct measurement of CNTs surface area in the liquid phase and subsequent adsorption of organic pollutants may bring about a deeper insight to the complex environmental interactions.
Key words:  polarity    structure    ionic strength    dispersion mechanism    sorption contribution
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB34  
基金资助: 国家自然科学基金(41303093);云南省自然科学基金面上项目(2014FB121);昆明理工大学人才启动经费(14118762
作者简介:  王朋:男,1987年生,博士研究生,主要从事碳纳米材料的环境行为研究 E-mail:wpeng0815@163.com 张迪:通讯作者,男,1982年生,博士,副教授,主要从事碳纳米材料的环境行为研究 E-mail:zhangdi2002113@sina.com
引用本文:    
王 朋, 张 迪, 张 凰, Ghosh Saikat. 天然有机质对纳米碳管环境行为的影响研究进展[J]. 材料导报, 2017, 31(1): 131-135.
WANG Peng, ZHANG Di, ZHANG Huang, Ghosh Saikat. Influence of Natural Organic Matter on Environmental Behavior of Carbon Nanotubes: A Review. Materials Reports, 2017, 31(1): 131-135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.018  或          http://www.mater-rep.com/CN/Y2017/V31/I1/131
1 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56.
2 Lam C W,James J T,McCluskey R,et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks[J]. Critical Rev Toxicology,2006,36:189.
3 Gass M H,Koziol K K,Windle A H,et al. Four-dimensional spectral tomography of carbonaceous nanocomposites[J]. Nano Lett,2006,6:376.
4 Lacerda L,Bianco A,Prato M,et al. Carbon nanotubes as nanomedicines: From toxicology to pharmacology[J]. Adv Drug Delivery Rev,2006,58:1460.
5 Upadhyayula V K,Deng S,Mitchell M C,et al. Application of carbon nanotube technology for removal of contaminants in drinking water: A review[J]. Sci Total Environ,2009,408:1.
6 Pan B,Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environ Sci Technol,2008,42:9005.
7 Yang K,Xing B. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environ Pollution,2009,157:1095.
8 Rao G P,Lu C,Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review[J]. Sep Purif Technol,2007,58:224.
9 Mauter M S,Elimelech M. Environmental applications of carbon-based nanomaterials[J]. Environ Sci Technol,2008,42:5843.
10 Navarro E,Baun A,Behra R,et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Environ Sci Technol,2008,17:372.
11 Apul O G,Karanfil T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review[J]. Water Res,2015,68:34.
12 Gimbert L J,Hamon R E,Casey P S,et al.Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation[J]. Environ Chem,2007,4:8.
13 Petersen E J,Huang Q,Weber Jr W J. Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus[J]. Environ Health Perspectives,2008,116:496.
14 Roberts A P,Mount A S,Seda B,et al. In vivo biomodification of li-pid-coated carbon nanotubes by Daphnia magna[J]. Environ Sci Technol,2007,41:3025.
15 Templeton R C,Ferguson P L,Washburn K M,et al. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod[J]. Environ Sci Technol,2006,40:7387.
16 Certini G,Scalenghe R,Ugolini. FC (2006) Soils: Basic concepts and future challenges[M]. UK: Cambridge University Press Cambridge,2006.
17 Li Q,Xie B,Hwang Y S,et al. Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight[J]. Environ Sci Technol,2009,43:3574.
18 Lin D,Xing B. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions[J]. Environ Sci Technol,2008,42:5917.
19 Bandyopadhyaya R,Nativ-Roth E,Regev O,et al. Stabilization of individual carbon nanotubes in aqueous solutions[J]. Nano Lett,2002,2:25.
20 O′connell M J,Bachilo S M,Huffman C B,et al. Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science,2002,297:593.
21 Matarredona O,Rhoads H,Li Z,et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]. J Phys Chem B,2003,107:13357.
22 Hyung H,Fortner J D,Hughes J B,et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environ Sci Technol,2007,41:179.
23 Chefetz B,Hatcher P G,Hadar Y,et al. Characterization of dissolved organic matter extracted from composted municipal solid waste[J]. Soil Sci Soc Am J,1998,62:326.
24 Polubesova T,Sherman-Nakache M,Chefetz B. Binding of pyrene to hydrophobic fractions of dissolved organic matter: Effect of polyvalent metal complexation[J]. Environ Sci Technol,2007,41:5389.
25 Chappell M A,George A J,Dontsova K M,et al. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances[J]. Environ Pollut,2009,157:1081.
26 Zhang D,Pan B,Cook R L,et al. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures[J]. Environ Pollut,2015,196:292.
27 Saleh N B,Pfefferle L D,Elimelech M. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes[J]. Environ Sci Technol,2010,44:2412.
28 Zhou X,Shu L,Zhao H,et al. Suspending multi-walled carbon nanotubes by humic acids from a peat soil[J]. Environ Sci Technol,2012,46:3891.
29 Wilkinson K J,Joz-Roland A,Buffle J. Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters[J]. Limnology Oceanography,1997,42:1714.
30 Gunasekara A S,Simpson M J,Xing B S. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids[J]. Environ Sci Technol,2003,37:852.
31 Pan B,Ghosh S,Xing B S. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration[J]. Environ Sci Technol,2008,42:1594.
32 Wang D,Chu L,Paradelo M,et al. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition[J]. J Colloid Interface Sci,2011,360:398.
33 Chen K L,Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C 60) nanoparticles in monovalent and divalent electrolyte solutions[J]. J Colloid Interface Sci,2007,309:126.
34 Lin D,Liu N,Yang K,et al. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions[J]. Carbon,2009,47:2875.
35 Wang S G,Liu X W,Gong W X,et al. Adsorption of fulvic acids from aqueous solutions by carbon nanotubes[J]. J Chem Technol Biotechnol,2007,82:698.
36 Yang K,Xing B S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water[J]. Environ Pollut,2007,145:529.
37 Ferguson P L,Chandler G T,Templeton R C,et al. Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates[J]. Environ Sci Technol,2008,42:3879.
38 Zhang S,Shao T,Bekaroglu S S K,et al. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds[J]. Environ Sci Technol,2009,43:5719.
39 Sheng G D,Shao D D,Ren X M,et al. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes[J]. J Hazard Mater,2010,178:505.
40 Wang X,Liu Y,Tao S,et al. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes[J]. Carbon,2010,48:3721.
41 Oleszczuk P,Pan B,Xing B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes[J]. Environ Sci Technol,2009,43:9167.
42 Petersen E J,Pinto R A,Landrum P F,et al. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms[J]. Environ Sci Technol,2009,43:4181.
43 Chen J,Chen W,Zhu D. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: Effects of aqueous solution che-mistry[J]. Environ Sci Technol,2008,42:7225.
44 Wang X,Tao S,Xing B. Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes[J]. Environ Sci Technol,2009,43:6214.
45 Ji L L,Chen W,Zheng S R,et al.Adsorption of sulfonamide antibio-tics to multiwalled carbon nanotubes[J]. Langmuir,2009,25:11608.
46 Chen Q,Saltiel C,Manickavasagam S,et al. Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension[J]. J Colloid Interface Sci,2004,280:91.
47 Jiang L Q,Gao L,Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. J Colloid Interface Sci,2003,260:89.
48 Peng X J,Jia J J,Gong X M,et al. Aqueous stability of oxidized carbon nanotubes and the precipitation by salts[J]. J Hazard Mater,2009,165:1239.
49 Yin Y F,Mays T,McEnaney B. Adsorption of nitrogen in carbon nanotube arrays[J]. Langmuir,1999,15:8714.
50 Pan B,Zhang D,Li H,et al. Increased adsorption of sulfametho-xazole on suspended carbon nanotubes by dissolved humic acid[J]. Environ Sci Technol,2013,47:7722.
51 Jaeger F,Bowe S,Van As H,et al. Evaluation of 1H NMR relaxo-metry for the assessment of pore-size distribution in soil samples[J]. Eur J Soil Sci,2009,60:1052.
52 Schaumann G E,Hobley E,Hurra B J,et al. H-NMR relaxometry to monitor wetting and swelling kinetics in high-organic matter soils[J]. Plant Soil,2005,275:1.
53 Nelson A,Jack K S,Cosgrove T,et al. NMR solvent relaxation in studies of multicomponent polymer adsorption[J]. Langmuir,2002,18:2750.
54 Carrillo-Carrión C,Lucena R,Cárdenas S,et al. Surfactant-coated carbon nanotubes as pseudophases in liquid-liquid extraction[J]. Analyst,2007,132:551.
55 Gotovac S,Hattori Y,Noguchi D,et al. Phenanthrene adsorption from solution on single wall carbon nanotubes[J]. J Phys Chem B,2006,110:16219.
56 Wang X,Lu J,Xing B. Sorption of organic contaminants by carbon nanotubes: Influence of adsorbed organic matter[J]. Environ Sci Technol,2008,42:3207.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[4] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[5] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[6] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[7] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[8] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[9] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[10] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[11] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
[12] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[13] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[14] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[15] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed