Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 110-115    https://doi.org/10.11896/j.issn.1005-023X.2017.01.015
  新材料新技术 |
利用合金低温生长晶体硅的研究进展
马玉升,张立峰,李亚琼,Rowaid Raad Muslim
北京科技大学冶金与生态工程学院,北京100083
Growing Crystalline Silicon with the Aid of Alloy Solvent at Low Temperature
MA Yusheng, ZHANG Lifeng, LI Yaqiong, Rowaid Raad Muslim
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 1502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于光伏行业对低成本晶体硅材料的巨大需求,晶体硅低温生长技术逐渐受到人们的青睐。该技术是在低温下将硅与低熔点金属进行共熔化处理,结合液相外延、合金定向凝固等技术生长、制备晶体硅。首先阐述了晶体硅低温制备原理,并对其生长行为、受控因素和应用现状进行综述,指出了目前各自存在的问题与难点,最后对下一阶段晶体硅生长技术的研究重点和发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马玉升
张立峰
李亚琼
Rowaid Raad Muslim
关键词:  晶体硅  合金  低温  生长技术    
Abstract: With the increasing demand of low-cost crystalline silicon material for photovoltaic industry, people gradually pay close attention to silicon growth technology at low-temperature. This technique is that crystalline silicon can be produced in the low temperature process, in which silicon is firstly alloyed with low-melting-point metals and then recrystallized, i.e. liquid phase epitaxy and directional solidification refining techniques. In this review, based on the basic principle of silicon growth techniques, the current situations of research and applications of liquid phase epitaxy and directional solidification are reviewed in this work.In addition, the current problems and the research direction of silicon growth technology are presented.
Key words:  crystalline silicon    alloy    low temperature    growth technique
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB34  
  TF89  
基金资助: 国家自然科学基金(51334002;51274034;51404019);中国博士后科学基金(2015M580985)
作者简介:  马玉升:男,1993年生,硕士研究生,主要从事晶体硅生长方面的研究 E-mail:mys_ustb@163.com 李亚琼:通讯作者,女,博士后,主要从事太阳能级多晶硅制备方面的研究 E-mail:liyq_ustb@163.com
引用本文:    
马玉升, 张立峰, 李亚琼, Rowaid Raad Muslim. 利用合金低温生长晶体硅的研究进展[J]. 材料导报, 2017, 31(1): 110-115.
MA Yusheng, ZHANG Lifeng, LI Yaqiong, Rowaid Raad Muslim. Growing Crystalline Silicon with the Aid of Alloy Solvent at Low Temperature. Materials Reports, 2017, 31(1): 110-115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.015  或          http://www.mater-rep.com/CN/Y2017/V31/I1/110
1 Ohl R S. Light-sensitive electric device including silicon: US, 2443542[P].1948-06-15.
2 Huang Q J, Lin J P, Wei C H, et al. Progress in application of silicon solar cell[J]. Develop Appl Mater,2009,24(6):93(in Chinese).
黄庆举,林继平,魏长河,等.硅太阳能电池的应用研究与进展[J]. 材料开发与应用,2009,24(6):93.
3 Fave A. Liquid phase epitaxy[M]//Crystal Growth of Si for Solar Cells. Springer Berlin Heidelberg,2009:135.
4 Nishida S, Nakagawa K, Iwane M, et al. Si-film growth using liquid phase epitaxy method and its application to thin-film crystalline Si solar cell[J]. Solar Energy Mater Solar Cells,2001,65(1-4):525.
5 Nelson H. Epitaxial growth from the liquid phase state and its application to the fabrication of tunnel and laser diodes[J]. RCA Rev,1963,24(4):603.
6 Zhuang J L, Terfort A, Wll C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: A review[J]. Coordination Chem Rev,2016,307:391.
7 Silvestre M E, Franzreb M, Weidler P G, et al. Magnetic cores with porous coatings: Growth of metal-organic frameworks on particles using liquid phase epitaxy[J]. Adv Funct Mater,2013,23(9):1210.
8 Matsue M, Yasutake Y, Fukatsu S, et al. Strain-induced direct band gap shrinkage in local Ge-on-insulator structures fabricated by lateral liquid-phase epitaxy[J]. Appl Phys Lett,2014,104(3):31.
9 Long G H, Wu B, Han S, et al. Development status and prospect of solar grade silicon production technology [J]. Chin J Nonferrous Met,2008,18(E01):386(in Chinese).
龙桂华,吴彬,韩松,等.太阳能级多晶硅生产技术发展现状及展望[J].中国有色金属报,2008,18(E01):386.
10 Jie W Q. Progress of solidification principles and the applications[J]. Mater China,2014(6):321(in Chinese).
介万奇.凝固原理的前沿进展及其应用[J].中国材料进展,2014(6):321.
11 Kurz W, Fisher D J. Fundamentals of solidification[M]. Aedermannsdorf, Switzerland: Trans Tech Publications,1986:91.
12 Yoshikawa T, Arimura K, Morita K. Boron removal by titanium addition in solidification refining of silicon with Si-Al melt[J]. Metall Mater Trans B,2005,36(6):837.
13 Obinata I, Komatsu N. Method of refining silicon by alloying[J]. Science Reports of the Research Institutes, Tohoku University Ser A, Physics, Chemistry and Metallurgy,1957,A-9:118.
14 Wong Y T, Hsieh C T, Lan A, et al. The effect of silica nucleation layers on grain control of multi-crystalline silicon in directional solidification[J]. J Crystal Growth,2014,404: 59.
15 Tourret D, Song Y, Clarke A J, et al. Phase-field simulation study of dendritic grain growth competition during alloy directional solidification[C]//TMS annual meeting 2016-Proceedings. Nashville, Tennessee, United States,2016.
16 Kinoshita K, Nakatsuka O, Yoda S, et al. Homogeneous Si0.5Ge0.5 bulk crystal growth as substrates for strained Ge thin films by the traveling liquidus-zone method[J]. Thin Solid Films,2012,520(8):3279.
17 Oda A, Kinoshita K, Yoda S, et al. Growth of Si0.5Ge0.5 single crystals by the traveling liquidus-zone method and their structural characterization[J]. Procedia Eng,2012,36: 404.
18 Wong Y T, Hsieh C, Lan C W. Development of grain structures of multi-crystalline silicon from randomly orientated seeds in directional solidification[J]. J Cryst Growth,2014,387:10.
19 Tan Y, Ren S Q, Shi S, et al. Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification[J]. Vacuum,2014,99:272.
20 Liu L X, Luo P, Li C, et al. Growth principle and technique of single crystal silicon[J]. J Changchun University of Science and Technology: Nat Sci Ed,2009,32(4):569(in Chinese).
刘立新,罗平,李春,等.单晶硅生长原理及工艺[J]. 长春理工大学学报:自然科学版,2009,32(4):569.
21 Feng R H, Ma T C, Jiang S, et al. Technology and process of solar grade polycrystalline silicon[J]. New Mater Ind,2007(5):59(in Chinese).
冯瑞华,马廷灿,姜山,等.太阳能级多晶硅制备技术与工艺[J].新材料产业,2007(5):59.
22 Wei K X, Deng D M, Ma W H, et al. Applications of directional solidification process in preparation of solar grade silicon by metallurgical route[J]. Chin J Vacuum Sci Technol,2014,34(12):1358(in Chinese).
魏奎先,郑达敏,马文会,等.定向凝固技术在冶金法中多晶硅制备过程中的应用[J].真空科学与技术学报,2014,34(12):1358.
23 Baliga B J. Fabrication of grown-in P-N junctions using liquid phase epitaxial growth of silicon: US, 4236947[P].1980-12-02.
24 Yoshikawa T, Morita K. Thermodynamics on the solidification refining of silicon with Si-Al melts[C]//TMS Annual Meeting. San Francisco,2005:549.
25 Jiang J, Zhang S G. Selections of solvents for Si liquid phase epitaxy[J]. Mater Sci Eng,1996,14(2):55(in Chinese).
江鉴,张仕国.硅液相外延的溶剂选择[J].材料科学与工程,1996,14(2):55.
26 Esfahani S. Solvent refining of metallurgical grade silicon using iron[D]. Toronto : University of Toronto,2010.
27 Morito H, Karahashi T, Uchikoshi M, et al. Low-temperature purification of silicon by dissolution and solution growth in sodium solvent[J]. Silicon,2012,4(2):121.
28 Ohshima Y, Yoshikawa T, Morita K. Effect of solidification conditions on Si growth from Si-Cu melts[J]. Suppl Proceedings: Mater Process Energy Mater,2011,1:677.
29 Ma X D, Yoshikawa T, Morita K. Solidification refining of Si for solar cells using Si-Sn solvent[C]//Silicon for the Chemical and Solar Industry Ⅺ. Bergen-Ulvik, Norway,2012:5.
30 Liu Z, Li C B, Xue C L, et al. Progress in Ge/Si heterostructures for light emitters[J]. Chin J Optics,2013,6(4):449(in Chinese).
刘智,李传波,薛春来,等.Si基Ge异质结构发光器件的研究进展[J].中国光学,2013,6(4):449.
31 Berger S, Quoizola S, Fave A, et al. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications[J]. Cryst Res Technol,2001,36(8-10):1005.
32 Ciszek T F, Wang T H, Wu X, et al. Si thin layer growth from metal solutions on single-crystal and cast metallurgical-grade multicrystalline Si substrates[C]//IEEE Photovoltaic Specialists Confe-rence. Louisville, KY,1993:65.
33 Massalski T B, Murray J L, Bennett L H, et al. Binary alloy phase diagrams[M]. Ohio: ASM International,1986.
34 DlAsaro L A, Landorf R W, Furnanage R A. Semiconductor silicon[J]. J Electrochem Soc,1969,116:233.
35 Kim H J. Liquid phase epitaxial growth of silicon in selected areas[J]. J Electrochem Soc,1972,119(10):1394.
36 Girault B, Chevrier F, Joullie A, et al. Liquid phase epitaxy of silicon at very low temperatures[J]. J Cryst Growth,1977,37(2):169.
37 Kresse F, Baumann G G, Jntsch O, et al. Liquid phase epitaxy of silicon at low temperatures[J]. J Cryst Growth,1990,104(3):744.
38 Lee S H, Green M A. Evaluation of binary and ternary melts for the low temperature liquid phase epitaxial growth of silicon[J]. J Electronic Mater,1991,20(10):635.
39 Qian Y B, Shi W M, Chen P F, et al. Silicon film preparation by li-quid phase epitaxy at low temperature[J]. Semiconductor Optoelectronics,1998,19(2):128(in Chinese).
钱永彪,史伟民,陈培峰,等.Si薄膜低温液相外延[J].半导体光电,1998,19(2):128.
40 Shi Z, Young T L, Green M A, et al. Solution growth of polycrystalline silicon on glass at low temperatures[C]//Conference Record of the Twenty Fourth IEEE Photovoltaic Specialists Conference. Hawaii,1994:1579.
41 Shi Z, Young T L, Zheng G F, et al. Investigation of polycrystalline silicon deposition on glass substrates[J]. Solar Energy Mater Solar Cells,1993,31(1):51.
42 Keevers M J, Turner A, Schubert U, et al. Remarkably effective hydrogenation of crystalline silicon on glass modules[C]//20th European Photovoltaic Solar Energy Conference,2005:1305.
43 Liao H. Study on electron irradiation of poly-Si thin films and poly-Si thin film solar cells and preparing of ceramic silicon for substrates of poly-Si thin films[D]. Chengdu: Sichuan University,2003(in Chinese).
廖华.薄膜太阳电池及其陶瓷硅衬底材料的制备和电子辐照研究[D].成都:四川大学, 2003.
44 Baudrant A, Vial H, Daval J. Liquid phase epitaxy of LiNgO $ sub 3 $ thin films for integrated optics[J]. Mater Res Bull,1975,10(12):1373.
45 Shi W M, Min J H, Wang L J, et al. Discussion of oxidation in silicon film grown by liquid phase epitaxy method[J]. J Shanghai University (Natural Science),2000,6(3):194(in Chinese).
史伟民,闵嘉华,王林军,等.关于硅薄膜液相外延中氧化问题的若干讨论[J]. 上海大学学报:自然科学版,2000,6(3):194.
46 Trumbore F A. Solid solubilities of impurity elements in germanium and silicon[J]. Bell System Technical J,1960,39(1):205.
47 Yoshikawa T, Morita K. Refining of silicon during its solidification from a Si-Al melt[J]. J Cryst Growth,2009,311(3):776.
48 Li Y Q, Li J Y, Tan Y, et al. Research developments of metallurgical grade silicon refining by Al-Si alloying process[J]. Mater Rev:Rev,2012,26(5):6(in Chinese).
李亚琼,李佳艳,谭毅,等.铝硅合金精炼提纯多晶硅的研究进展[J].材料导报:综述篇,2012,26(5):6.
49 Nishi Y, Kang Y, Morita K. Control of Si crystal growth during solidification of Si-Al melt[J]. Mater Trans,2010,51(7):1227.
50 Mitrainovic' A M, Utigard T A. Refining silicon for solar cell application by copper alloying[J]. Silicon,2009,1(4):239.
51 Ma X D, Yoshikawa T, Morita K. Si growth by directional solidification of Si-Sn alloys to produce solar-grade Si[J]. J Cryst Growth,2013,377:192.
52 Li Y Q. Study on the segregation behavior of boron during Si-Al(-Sn) alloy solidification process[D]. Dalian: Dalian University of Technology,2015(in Chinese).
李亚琼.Si-Al(-Sn)合金凝固精炼过程中硼杂质分凝行为的研究[D].大连:大连理工大学,2015.
53 Kinoshita K, Arai Y, Inatomi Y, et al. Growth of a Si0.50Ge0.50 crystal by the traveling liquidus-zone (TLZ) method in microgravity[J]. J Cryst Growth,2014,388(4):12.
54 Kinoshita K, Miyata H, Tanaka R, et al. Si0.5Ge0.5 bulk single crystals with uniform composition[J]. J Cryst Growth,2012,349(1):50.
55 Kinoshita K, Arai Y, Nakatsuka O, et al. Growth of 2 inch Si0.5-Ge0.5 bulk single crystals[J]. Jpn J Appl Phys,2015,54(4S):04DH03.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[4] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[5] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[6] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[7] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[8] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[9] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[10] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[11] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[12] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[13] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[14] 周勇, 冯雪楠, 毕宗岳, 田小江, 王雷, 李博锋. 低碳微合金管材TIG焊热影响区软化成因分析[J]. 材料导报, 2019, 33(z1): 428-431.
[15] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed